• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

We’ve Discovered How Diamonds Make Their Way To The Surface And It May Tell Us Where To Find Them

July 27, 2023 by Deborah Bloomfield

The Conversation“A diamond is forever.” That iconic slogan, coined for a highly successful advertising campaign in the 1940s, sold the gemstones as a symbol of eternal commitment and unity.

But our new research, carried out by researchers in a variety of countries and published in Nature, suggests that diamonds may be a sign of break up too – of Earth’s tectonic plates, that is. It may even provide clues to where is best to go looking for them.

Advertisement

Diamonds, being the hardest naturally-occurring stones, require intense pressures and temperatures to form. These conditions are only achieved deep within the Earth. So how do they get from deep within the Earth, up to the surface?

Diamonds are carried up in molten rocks, or magmas, called kimberlites. Until now, we didn’t know what process caused kimberlites to suddenly shoot through the Earth’s crust having spent millions, or even billions, of years stowed away under the continents.

Supercontinent cycles

Most geologists agree that the explosive eruptions that unleash diamonds happen in sync with the supercontinent cycle: a recurring pattern of landmass formation and fragmentation that has defined billions of years of Earth’s history.

However, the exact mechanisms underlying this relationship are debated. Two main theories have emerged.

Advertisement

One proposes that kimberlite magmas exploit the “wounds” created when the Earth’s crust is stretched or when the slabs of solid rock covering the Earth – known as tectonic plates – split up. The other theory involves mantle plumes, colossal upwellings of molten rock from the core-mantle boundary, located about 2,900km beneath the Earth’s surface.

Cross section of the Earth

A representation of the internal structure of the Earth.

Image credit: USGS, Public Domain

Both ideas, however, are not without their problems. Firstly, the main part of the tectonic plate, known as the lithosphere, is incredibly strong and stable. This makes it difficult for fractures to penetrate, enabling magmas to flush through.

In addition, many kimberlites don’t display the chemical “flavours” we’d expect to find in rocks derived from mantle plumes.

In contrast, kimberlite formation is thought to involve exceedingly low degrees of mantle rock melting, often less than 1%. So, another mechanism is needed. Our study offers a possible resolution to this longstanding conundrum.

Advertisement

We deployed statistical analysis, including machine learning – an application of artificial intelligence (AI) – to forensically examine the link between continental breakup and kimberlite volcanism. The results of our global study showed the eruptions of most kimberlite volcanoes occurred 20 to 30 million years after the tectonic breakup of Earth’s continents.

Furthermore, our regional study targeting the three continents where most kimberlites are found – Africa, South America and North America – supported this finding. It also added a major clue: kimberlite eruptions tend to gradually migrate from the continental edges to the interiors over time at a rate that is uniform across the continents.

This begs the question: what geological process could explain these patterns?
To address this question, we employed multiple computer models to capture the complex behaviour of continents as they experience stretching, alongside the convective movements within the underlying mantle.

Domino effect

We propose that a domino effect can explain how breakup of the continents eventually leads to formation of kimberlite magma. During rifting, a small region of the continental root – areas of thick rock located under some continents – is disrupted and sinks into the underlying mantle.

Advertisement

Here, we get sinking of colder material and upwelling of hot mantle, causing a process called edge-driven convection. Our models show that this convection triggers a chain of similar flow patterns that migrate beneath the nearby continent.

Our models show that while sweeping along the continental root, these disruptive flows remove a substantial amount of rock, tens of kilometres thick, from the base of the continental plate.

Various other results from our computer models then advance to show that this process can bring together the necessary ingredients in the right amounts to trigger just enough melting to generate gas-rich kimberlites. Once formed, and with great buoyancy provided by carbon dioxide and water, the magma can rise rapidly to the surface carrying its precious cargo.

Halema‘uma‘u crater

It hasn’t been clear how the molten rock carrying diamonds got to the surface from deep within the Earth.

Image credit: N. Deligne / USGS, Public Domain

Finding new diamond deposits

This model doesn’t contradict the spatial association between kimberlites and mantle plumes. On the contrary, the breakup of tectonic plates may or may not result from the warming, thinning and weakening of the plate caused by plumes.

Advertisement

However, our research clearly shows that the spatial, time-based and chemical patterns observed in most kimberlite-rich regions can’t be adequately explained solely by the presence of plumes.

The processes triggering the eruptions that bring diamonds to the surface appear to be highly systematic. They start on the edges of continents and migrate towards the interior at a relatively uniform rate.

This information could be used to identify the possible locations and timings of past volcanic eruptions tied to this process, offering insights that could enable the discovery of diamond deposits and other rare elements needed for the green energy transition.

If we are to look for new deposits, it’s worth bearing in mind that there are currently efforts by campaign groups to try to eliminate from world markets those diamonds that are used to fund wars (conflict diamonds) or those coming from mines with poor conditions for workers.

Advertisement

Diamonds may or may not be forever, but our work shows that new ones have been repeatedly created over long periods in the history of our planet.The Conversation

Thomas Gernon, Associate Professor in Earth Science, University of Southampton

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Dollar marks one-week top amid higher U.S. yields, ECB caution
  2. Tennis-Barty among first three qualifiers for WTA Finals
  3. Back in black: U.S. Supreme Court returns from COVID-19 telework
  4. How Ancient Greek Philosophers And Mythology Saw The End Of The World

Source Link: We’ve Discovered How Diamonds Make Their Way To The Surface And It May Tell Us Where To Find Them

Filed Under: News

Primary Sidebar

  • Want Your Career To Take The Next Step? How Scientific Conferences Can Be A Catalyst For Change
  • Why Do Little Birds Always Ride On Rhinos? It’s An Incredibly Deep Relationship
  • The World’s Rarest Great Ape Just Got Even Rarer
  • This Is The First Ever Map Of The Entire Sky In An Incredible 102 Infrared Colors
  • Was Jesus Christ Actually Born On December 25?
  • Is It True There Are Two Places On Earth Where You Can Walk Directly On The Mantle?
  • Around 90 Percent Of People Report Personality Changes After An Organ Transplant – Why?
  • This Worm Quietly Lived In A Lab For Decades, But They Had No Idea Just How Old It Truly Was
  • Fewer Than 50 Of These Carnivorous “Large Mouth” Plants Exist In The World – Will Humans Drive Them To Extinction?
  • These Are The Best Fictional Spaceships, According To Astronauts – What Are Yours?
  • Can I See Comet 3I/ATLAS From Earth During Its Closest Approach Today? Yes, Here’s How
  • The Earliest Winter Solstice Rituals Go All The Way Back To The Stone Age
  • We Were F*&@ing Right – Swearing Is Good For You And Now We Know Why
  • Why Do Wombats Have Square Poop? New Discovery Reveals How Their “Latrines” May Act Like Dating Apps
  • IFLScience The Big Questions: Answering Some Of The Biggest Scientific Mysteries Of 2025
  • Astronomers Catch Incredible First Direct Images Of Objects Colliding In Another Star System
  • Billionaire Jared Isaacman Finally Confirmed As Head Of NASA, As Agency Faces Uncertain Future
  • Something Just Crashed Into The Moon – And Astronomers Captured The Whole Event
  • These “Living Rocks” Are Among The Oldest Surviving Life And Are Champion Carbon Dioxide Absorbers
  • Ambitious Iguana “Love Island” For Near-Extinct Reptiles Becomes Epic Conservation Success Story
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version