• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

What Are Primordial Black Holes?

May 9, 2024 by Deborah Bloomfield

New NASA research suggests that their upcoming space telescope, the Nancy Grace Roman, will be able to look for primordial black holes, which can be smaller than regular black holes, with masses even smaller than a planet like ours. Well, as long as these objects exist, that is. But you might be wondering: what are primordial black holes?

Advertisement

Black holes need extreme compression to form. At least, that’s how the stellar black holes come to be. A massive star goes supernova and its core is compacted so tightly under the gravitational collapse that an object with incredible density is born. An object from which nothing, not even light, can escape.

Advertisement

Black holes go from masses of a few times that of the Sun, to billions of times our little star. The formation of the supermassive black holes is more complex. Maybe they were seeded by black holes from very massive stars, or maybe gas clouds just collapsed on themselves under gravitational forces.

But since all the way back in 1966, researchers have suggested the possibility of a completely different class of black holes. These are the primordial black holes. They formed within the first microseconds after the Big Bang, at a time when the universe was a hot dense plasma of particles.

Now making a black hole back then was not extremely difficult. The universe experienced a period of extraordinary expansion called cosmic inflation. And even right after, the universe was still hot enough for a black hole to form. You just need a difference in the density of a region of the universe of 10 percent for the collapse to form and the black hole to pop into existence.

Given that you don’t need stellar conditions, it is possible to create much smaller black holes than what you get with supernovae. In fact, you could get primordial black holes with the mass of an asteroid compressed into the size of a molecule. Such an object could be in the Solar System right now. These objects could either be like a parasite, falling into stars and beginning to eat them from the inside, or they might also be the seed of all supermassive black holes, including the one at the center of the Milky Way.

Advertisement

Primordial black holes remain completely theoretical and this is why Roman’s observations could be revolutionary. This work won’t require any unplanned observations. The telescope will look for rogue planets, planets that float freely in space unbound from the stars from which they formed, and that quest might reveal the existence of primordial black holes over time. The telescope could find a large number of them.

“There’s no way to tell between Earth-mass black holes and rogue planets on a case-by-case basis,” lead author William DeRocco, a postdoctoral researcher at the University of California Santa Cruz, said in a statement. “Roman will be extremely powerful in differentiating between the two statistically.”

“This is an exciting example of something extra scientists could do with data Roman is already going to get as it searches for planets,” added Kailash Sahu, an astronomer at the Space Telescope Science Institute in Baltimore, who was not involved in the study. “And the results are interesting whether or not scientists find evidence that Earth-mass black holes exist. It would strengthen our understanding of the universe in either case.”

The study is published in the journal Physical Review D.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Events leading up to the trial of Theranos founder Elizabeth Holmes
  2. “Man Of The Hole”: Last Known Member Of Uncontacted Amazon Tribe Has Died
  3. This Is What Cannabis Looks Like Under A Microscope – You Might Be Surprised
  4. Will Lake Mead Go Back To Normal In 2024?

Source Link: What Are Primordial Black Holes?

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version