• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

What Are The Claims of “New” Physics From The Muon g-2 Experiment All About?

August 14, 2023 by Deborah Bloomfield

On Thursday, August 10, the Muon g-2 experiment reported follow-up results to its 2021 measurements. There is something wrong with the muon, the heavier sibling of the electron. This fundamental particle is not behaving in the way it is predicted to by our best theory of the fundamental universe: the Standard Model of Particle Physics.

But one step at a time. The muon is like a chonky version of the electron: it has the same electric charge, but is almost 207 times more massive. As subatomic particles go, muons are unstable, decaying in a couple of microseconds, but that’s enough to do some cool science – most significantly, when the muon is accelerated close to the speed of light.

Advertisement

Special relativity tells us that time slows down the faster you go, so when accelerated these particles stay around for longer. This is why muons make up a lot of cosmic rays that can reach the ground. High-speed protons hit the atmosphere creating muons. These move so fast that despite their short lifespan, they can make it all the way down. The muon was discovered in cosmic rays.

The Standard Model is our best theory of particle physics. It has correctly predicted the existence of many particles, and explains so much about the fundamental forces that govern the universe. At the same time, it is hugely limited. It does not include gravity or the hypothetical dark matter and dark energy, which are expected to make up most of the universe.

This might seem like a contradiction. How can our best theory be so limited? But it is actually pretty good to have a theory with clear limits and yet great explanatory powers. The issue is that the limits are nowhere we can test. Until the muon came in. And in particular, its magnetic properties.

The Standard Model has a clear prediction for the magnetic moment of the muon, but the measured value at Brookhaven National Laboratory early this century hinted that it was not correct. Scientists decided that it was intriguing but needed to be tested further. And the best place to do that was Chicago, where they could create a purer beam of muons. So they had to take the whole experiment on a 5,000-kilometer (3,200-mile) trip from Long Island, New York down to Florida and through Tennessee to get to Fermilab just outside Chicago.

A truck with an oversized load ign and behind the enourmous magnet of the experiment that takes up more of the two lanes of this motorway. The photo is at night and the road is deserted apart from the truck and support vehicle.

The experiment during the last leg of the trip.

Image credit: Fermilab

The work done at Fermilab confirmed that there is an anomalous magnetic moment and the new data analysis puts this to a never-before-seen confidence level. Their precision level is one part in 200,000.

“This measurement is an incredible experimental achievement,” Peter Winter, co-spokesperson for the Muon g-2 collaboration, said in a statement. “Getting the systematic uncertainty down to this level is a big deal and is something we didn’t expect to achieve so soon.”

Experiments improve their statistical uncertainty by collecting more and more data and analyzing it together. This value is not the full dataset of the Muon g-2 collaboration. That will be completed in the next few years.

“Our new measurement is very exciting because it takes us well beyond Brookhaven’s sensitivity,” added Graziano Venanzoni, professor at the University of Liverpool affiliated with the Italian National Institute for Nuclear Physics, Pisa, and co-spokesperson of the Muon g-2 experiment at Fermilab.

The measurement from Brookhaven and its error bar is compared to the Fermilab 2018 data, the new data, and the combined averafe at fermilab and with Brookhaven. It shows how much smaller the uncertainy got in the latest work.

The value of the anomaly as it has changed through the years.

Image credit: Muon g-2 collaboration

So what is causing the anomalous magnetic moment to behave differently from the prediction? The researchers compared the magnetic moment within the theoretical framework, as the muon can have different “dance partners” that produce the value. But theory is clearly missing a sneaky partner, one that is not present or accounted for in the Standard Model. Theoreticians are working on this problem and the goal is that when the final data is announced in 2025, new theoretical predictions will also be published.

The Standard Model continues to serve us very well to understand the universe, but it is very exciting that we are starting to look beyond it.

The findings are reported in an as-yet unpublished paper that has been submitted to Physical Review Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. Study Reveals Which Humans Survived The Last Ice Age And Which Didn’t

Source Link: What Are The Claims of "New" Physics From The Muon g-2 Experiment All About?

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version