• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

What Caused Our First Interstellar Visitor’s Non-Gravitational Acceleration?

April 25, 2024 by Deborah Bloomfield

In 2017, astronomers at the Pan-STARRS1 observatory looking for near-Earth asteroids spotted an object as it hurtled past our Sun at 38.3 kilometers per second (23.8 miles per second). 

Soon, telescopes around the world pointed in the unusual object’s direction, trying to capture as much data as they could before it moved away from the Sun. Looking at visible light reflecting off the object, scientists were able to determine its size and shape, finding it is around 400 meters (1,300 feet) long, and likely shaped like a pancake.

Advertisement

The speed and trajectory of the object A/2017 U1 suggested that it did not come from our Solar System, and that it will leave our Solar System again. ‘Oumuamua, as it is now called, was our first confirmed interstellar visitor. 



One thing that puzzled scientists about the object was that it underwent non-gravitational acceleration as it passed through the Solar System, meaning that the acceleration it underwent could not be explained only by gravitational forces acting upon it. While this led some, including Harvard’s controversial astronomer Avi Loeb, to speculate that ‘Oumuamua could be an alien spaceship or probe producing its own thrust, a lot more likely explanations have been proposed.

The real puzzle for astronomers was not the acceleration itself. As comets get close to the Sun and heat up, they outgas, losing gas and dust, which form their trail or coma. This outgassing acts like thrusters, slightly altering the trajectory, rotation, and speed of the comet. Outgassing could explain ‘Oumuamua’s acceleration, but no coma was observed, and its shape is unusual for a comet.  

Advertisement

In 2023, a team came up with a solution: ‘Oumuamua is a water-rich planetesimal, which lost hydrogen from its surface as it headed through our Solar System.

“A comet traveling through the interstellar medium basically is getting cooked by cosmic radiation, forming hydrogen as a result. Our thought was: If this was happening, could you actually trap it in the body, so that when it entered the solar system and it was warmed up, it would outgas that hydrogen?” Jennifer Bergner, assistant professor of chemistry at UC Berkeley and co-author on the paper, said in a statement. “Could that quantitatively produce the force that you need to explain the non-gravitational acceleration?”

Research conducted in the 20th century showed that when high-energy particles like cosmic rays hit icy bodies, molecular hydrogen (H2) is produced and trapped within the ice.

“For a comet several kilometers across, the outgassing would be from a really thin shell relative to the bulk of the object, so both compositionally and in terms of any acceleration, you wouldn’t necessarily expect that to be a detectable effect,” Bergner continued. “But because ‘Oumuamua was so small, we think that it actually produced sufficient force to power this acceleration.”

Advertisement

The object is likely an interstellar planetesimal, which lost hydrogen in its encounter with our Sun, altering its velocity. Another study in 2017 hinted that this could have been the object’s first encounter with a star.

“The heliocentric incoming velocity of ‘Oumuamua in right-handed Galactic coordinates is v∞(U, V, W)=(−11.2, −22.4, −7.6) km s−1. This is remarkably close to the mean motion of stars in the solar neighborhood, with an especially small deviation from the mean in U and W,” the team explained in their paper. 

“Younger stars have smaller velocity dispersions than older systems, so this close proximity to the exact local mean velocity suggests an origin in a young stellar system, although the possibility that ‘Oumuamua has been orbiting the galaxy for billions of year cannot be ruled out. This encounter has transformed ‘Oumuamua’s orbit from one that is particularly close to the local mean to one that is typically dispersed from the mean, hinting that this may be its first close approach to a star, and its first chance to lose volatiles.”

There have been challenges to the hydrogen explanation, however, with physical chemist Niels Ligterink proposing that “modelling, laboratory and theoretical results show that it is unlikely that sufficient H2 can be produced in ‘Oumuamua to accelerate it if the object largely consisted of H2O ice”.

Advertisement

“This implies that there must be another or additional driver of ‘Oumuamua acceleration,” he wrote in a Matters Arising response to the 2023 study, “or the object has a very unusual ice composition and is substantially older (>500 Myr) than postulated”.

However, he postulated that if the object is substantially older than assumed and contains (for example) methanol, there might be a big enough yield to produce the observed acceleration once degassing began.

Responding to Ligterink, the team noted that “it is clear that additional experimental efforts are necessary to explore trends in H2O radiolysis for, for example, thicker ices and over longer timescales. However, the extant experimental data do not convincingly prove that higher H2 yields cannot occur in astrophysical settings,” adding that experiments have found higher yields (of around 35 percent) were generally consistent with the uncertainties.

“We agree that when modelling the behaviour of ‘Oumuamua, it is important to consider factors such as its age and received energy dose, as well as the ice-phase H2 formation rate and possible maximum yields,” the team wrote in reply. “Ultimately, the model presented in our paper can explain ‘Oumuamua’s non-gravitational acceleration with assumptions for the age, composition and H2 content of the body that are compatible with existing experimental and observational constraints.”

Advertisement

Studying the object closer could tell us more about young stellar systems. Unfortunately, it is now out of range of our existing telescopes, and so a probe would be needed to study it in more detail. Such a mission – dubbed Project Lyra – has been proposed to do just that, perhaps sling-shotting past Jupiter and gaining gravitational acceleration.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. ARK Invest’s Wood expects market rotation back to growth stocks
  2. Most Plant-Based Milks Are Poorer In Key Micronutrients Than Dairy
  3. Great Pacific Garbage Patch Now A Floating Love Shack For Coastal Species
  4. Hard Working Urchins Don’t Deserve Their Bad Reputation

Source Link: What Caused Our First Interstellar Visitor's Non-Gravitational Acceleration?

Filed Under: News

Primary Sidebar

  • Could One Drill A Hole From One Side Of The Earth And Come Out The Other Side?
  • Africa Is Splitting Into Two Continents And A Vast New Ocean Could Eventually Open Up
  • Which Is Better: Hot Or Cold Showers?
  • Is Gustave The Killer Croc Dead? Notorious Crocodile Accused Of 300 Deaths Is Surrounded By Legend
  • Why Do We Have Two Nostrils, Instead Of One Big Nose Hole?
  • Humans Have Accidentally Created A Barrier Around The Earth
  • Something Just Crashed Into The Moon, First-Known Instance Of Prehistoric Bees Nesting In Fossil Skulls, And Much More This Week
  • Interstellar Comet 3I/ATLAS Carries The Key Molecules For Life In Unusual Abundance– What Does That Mean?
  • Want Your Career To Take The Next Step? How Scientific Conferences Can Be A Catalyst For Change
  • Why Do Little Birds Always Ride On Rhinos? It’s An Incredibly Deep Relationship
  • The World’s Rarest Great Ape Just Got Even Rarer
  • This Is The First Ever Map Of The Entire Sky In An Incredible 102 Infrared Colors
  • Was Jesus Christ Actually Born On December 25?
  • Is It True There Are Two Places On Earth Where You Can Walk Directly On The Mantle?
  • Around 90 Percent Of People Report Personality Changes After An Organ Transplant – Why?
  • This Worm Quietly Lived In A Lab For Decades, But They Had No Idea Just How Old It Truly Was
  • Fewer Than 50 Of These Carnivorous “Large Mouth” Plants Exist In The World – Will Humans Drive Them To Extinction?
  • These Are The Best Fictional Spaceships, According To Astronauts – What Are Yours?
  • Can I See Comet 3I/ATLAS From Earth During Its Closest Approach Today? Yes, Here’s How
  • The Earliest Winter Solstice Rituals Go All The Way Back To The Stone Age
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version