• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

What’s The Maximum Size That Insects Could Theoretically Reach?

October 24, 2022 by Deborah Bloomfield

One of the best things about evolution (other than our good friend the thumb) is how it hasn’t brought about an army of tank-sized cockroaches. Bar a few giants from the past and some freakily-long stick insects, insects tend to remain relatively small – but why is that, and how big is it possible for an insect to get? 

Many insects and arthropods were bigger in the ancient past. The largest insect of all time was Meganeuropsis Permiana, a dragonfly that lived in the late Permian era, around 275 million years ago. These dragonflies had a wingspan of about 75 centimeters (2.5 feet) and weighed over 450 grams (1 pound). Insects like atlas moths (Attacus atlas) reach impressive sizes – with a 27-centimeter (10.6-inch) wingspan – but do not compare to their distant relatives. 

Advertisement

Figuring out what has made modern insects smaller could help us find out why insects can’t grow above a certain size.

One theory is that insect exoskeletons aren’t strong enough to support larger bodies – and as insects grew bigger, their exoskeletons would have to become thicker than is possible. Backing up this theory is the fact that arthropods in the sea do get larger. In the sea, their exoskeletons don’t have to support the weight of their bodies in the same way as on land. However, as Arizona State University entomologist Dr Jon Harrison explained to SciShow in 2012, the data doesn’t really back this theory up. Larger arthropods (on land) don’t have thicker exoskeletons than smaller arthropods, which you’d expect if the theory was correct.

Another theory is that the way insects breathe prevents them from growing truly massive.

Advertisement

“So, insects breathe in an entirely different way from humans,” he said in the video. “They have a series of holes along the side of their body, and then the oxygen comes in through these holes and goes, as a gas, in air-filled tubes. And these tubes branch, kinda like a branching tree, and get very small, down to the range of a micron in size. So, really tiny, and can get down close to every cell.”

With bigger insects, it might not be possible to get enough oxygen down these tubes, known as tracheoles, to keep the animals alive. What backs up this theory is that insects were bigger millions of years ago.

“That idea has gotten some recent support from geologists who showed that in the late Paleozoic, atmospheric oxygen rose to well above what it is today,” Harrison explained.

Advertisement

“Right now, it’s 21 percent oxygen, In the late Paleozoic, we think it was about 32 percent oxygen. And that happens to coincide with when we had much larger insects than we have today. And so that, kind of, has boosted this idea that oxygen delivery is what keeps insects small, and that higher oxygen in the atmosphere could enable them to get bigger.”

So all you need to do (perhaps, and if you were so inclined) to get insects the size of goats may be to pump the atmosphere full of oxygen, add a few stressors that would make being larger advantageous, and wait for evolution to do its thing.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Fernandez pays tribute to New York City on anniversary of 9/11
  2. Aiming to create a gender-equitable startup landscape?
  3. This Week in Apps: PayPal launches ‘super app,’ Twitter adds crypto tips, Apple won’t take Fortnite back
  4. Heirs of billionaire Brazilian banker Safra close to deal, sources say

Source Link: What's The Maximum Size That Insects Could Theoretically Reach?

Filed Under: News

Primary Sidebar

  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • The World’s Largest Living Reptile Can “Surf” Over 10 Kilometers To Get Between Islands
  • In 1962, A Geologist Went Into A Cave. 2 Months Later, He’d Accidentally Invented A New Field Of Biology.
  • The Ancient Remains Of A 3-Ton Shark Indicate A New Point Of Origin For Gigantic Lamniform Sharks
  • The Biggest Landslide In Recorded History Happened Quite Recently And Pretty Close To Home
  • Meet The Amami Rabbit, A Goth Bunny That’s Also A Living Fossil
  • The Largest Native Terrestrial Animal In Antarctica Is Both Smaller And Tougher Than You’d Expect
  • The Freaky Reason Why You Should Never Store Tomatoes And Potatoes Together
  • Hominin Vs. Hominid: What’s The Difference?
  • Experimental Alzheimer’s Drug Could Have The Power To Halt Disease Before Symptoms Even Start
  • Al Naslaa: What Made This Enormous Boulder In Saudi Arabia Split In Two? Nobody’s Quite Sure
  • The Amazon Is Entering A “Hypertropical” Climate For The First Time In 10 Million Years
  • What Scientists Saw When They Peered Inside 190-Million-Year-Old Eggs And Recreated Some Of The World’s Oldest Dinosaur Embryos
  • Is 1 Dog Year Really The Same As 7 Human Years?
  • Were Dinosaur Eggs Soft Like A Reptile’s, Or Hard Like A Bird’s?
  • What Causes All The Symptoms Of Long COVID And ME/CFS? The Brainstem Could Be The Key
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version