• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Which Number Is Bigger, 3.14^π Or π^3.14? Here’s How To Solve It

September 23, 2025 by Deborah Bloomfield

Imagine the situation: you walk into an interview, and they hit you with an unexpected question. Which number is bigger, they ask: 3.14π, or π3.14?

Now, other than being annoyed that this is being asked for an entry-level job at a gas station, what’s the answer? Don’t worry, we don’t expect you to work it out by hand – or at all, actually. Thanks to a useful mathematical rule, you can pick the right answer almost immediately – no pen, paper, or pocket calculator necessary.

So, what’s the rule? It’s that, generally, exponentials beat multiplication. This is the area of math known as asymptotics, which deals with the behavior of functions as the numbers they act on shoot off to zero and infinity – and there’s a whole hierarchy of how fast they grow that student mathematicians have to work into their muscle memory before they can graduate.

It goes like this: assuming x and n are positive (the other cases aren’t too difficult to adapt), we have the slowest growth being… well, technically the slowest growth comes from a constant function, because it doesn’t grow at all. After that, however, we have logarithmic functions as the slowest growing: they do tend to infinity, but they get there really, really slowly.

A graph of f(x)=ln(x), the natural logarithm. It grows slowly.

Yawn.

Image credit: IFLScience, using GeoGebra

Then there’s linear functions: nx. Basically, these are functions where you’re just doubling the input, tripling it, or suchlike. It’s technically a polynomial, so it’s often absorbed into the next category: polynomial functions xn – things like x2, x3, x3.14, xπ (put a pin in those last two).

Graphs of y=x, x^2, x^4, and x^12

Green: y=x; blue: y=x^2; red: y=x^4; orange: y=x^12.

Image credit: IFLScience, using GeoGebra

Next come exponential functions – here we swap around the polynomials to get nx.

Graphs of y=2^x, 3^x, 5^x, 8^x

Grey: y=2^x; green: y= 3^x; blue: y= 5^x; red: y= 8^x

Image credit: IFLScience, using GeoGebra

And finally, we have factorials: x!, or x multiplied by every number below it (shut up, math nerds, we’re ignoring the gamma function today).

A graph showing y = x factorial and y= 2^x

Orange is y=x! – grey is y=2^x, for comparison.

Image credit: IFLScience, using GeoGebra

Now, that’s not an exhaustive list – factorials can actually be beaten by, say, xx, for example – but it’s the basic setup. And we can use this to figure out the answer to the original question: we can see that generally, nx grows faster than nx – or to put it another way, whatever is in the exponent has more of an effect than whatever is in the base. 

And since pi is greater than 3.14 – even if it’s only by less than two thousandths – that means the expression with π as the exponent is going to win.

Now, a caveat before you start busting this rule out willy-nilly: it doesn’t work below e. Try the same trick with 2 and 2.5, for example, and it reverses: we have 22.5 = 5.66, but 2.52 = 6.25.

Nevertheless, for this job interview, the general rule holds out. And if you’re wondering what the answers really are, we can finally prove our case: 3.14π = 36.404, while π3.14 = 36.396. They’re close, but the greater exponent has clearly won out. What’s our starting salary, boss?

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. UK’s slow growth and rising inflation gives BoE headache – PMIs
  2. One Identity has acquired OneLogin, a rival to Okta and Ping in sign-on and identity access management
  3. Iron Sulfides In Hot Springs May Have Been The Catalysts Needed To Spark Life
  4. “Hidden” Changes To US Health Data Swapping “Gender” For “Sex” Spark Fears For Public Trust

Source Link: Which Number Is Bigger, 3.14^π Or π^3.14? Here's How To Solve It

Filed Under: News

Primary Sidebar

  • Kissing Has Survived The Path Of Evolution For 21 Million Years – Apes And Human Ancestors Were All At It
  • NASA To Share Its New Comet 3I/ATLAS Images In Livestream This Week – Here’s How To Watch
  • Did People Have Bigger Foreheads In The Past? The Grisly Truth Behind Those Old Paintings
  • After Three Years Of Searching, NASA Realized It Recorded Over The Apollo 11 Moon Landing Footage
  • Professor Of Astronomy Explains Why You Can’t Fire Your Enemies Straight Into The Sun
  • Do We All See The Same Blue? Brilliant Quiz Shows The Subjective Nature Of Color Perception
  • Earliest Detailed Observations Of A Star Exploding Show True Shape Of A Supernova
  • Balloon-Mounted Telescope Captures Most Precise Observations Of First Known Black Hole Yet
  • “Dawn Of A New Era”: A US Nuclear Company Becomes First Ever Startup To Achieve Cold Criticality
  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • This 12,000-Year-Old Artwork Shows An “Extraordinary” Moment In History And Human Creativity
  • World’s First Critically Endangered Penguin Directly Competes With Fishing Boats For Food
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version