• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Why Can Pineapple Skin Tolerate A Metal Ball Heated To 1,000 Degrees?

August 1, 2024 by Deborah Bloomfield

If something came over you and you felt compelled to drop a metal ball superheated to 1,000 degrees Celsius (1,832 degrees Fahrenheit) onto a piece of pineapple skin, you’d observe a peculiar phenomenon. Rather than burning, erupting into flames, or fizzing out of existence, the pineapple skin does, well, not much. How? It all comes down to a little something called the Leidenfrost effect.

Such a bizarre experiment was shared in a video on X. In it, we see a defenceless sliver of pineapple skin on a table, minding its own business until a super-heated glowing iron ball is dropped on top of it.

The video rolls on and the pineapple skin looks pretty much fine until eventually the ball loses its orange glow. Flipping it over reveals that the fleshy innards never even got singed, so what’s going on? Is pineapple some kind of super material we should be crafting into armor?

As much as we’d love to see that battle, the fact is that what we’re witnessing here is a nifty quirk of heat transfer. It’s something called the Leidenfrost effect and it isn’t unique to pineapples (see also: watermelons). It’s a fun phenomenon that can make water flow uphill, and you’ve probably seen it in the kitchen.

The Leidenfrost Effect acting on a water droplet.

The Leidenfrost Effect acting on a water droplet.

As explained by Seppo Louhenkilpi from the Aalto University School of Chemical Technology, heat transfer is influenced by something known as Leidenfrost temperature. Above this temperature, a surface is so hot that when it comes into contact with a liquid it forms a layer of steam so the surface and the liquid aren’t in direct contact.

Where you may have seen this before is if you drop liquid on a hot surface, it can form into little balls that appear to float. Similarly, if you put a really hot ball in water, it creates a little steam bubble so that the ball itself isn’t touching the water. Just check it out in the below video.

Advertisement

What this means for heat transfer is that on surfaces above the Leidenfrost temperature, the heat transfer rate doesn’t change much. For surfaces below the Leidenfrost temperature, the comparatively cooler hot surface can come into direct contact with the liquid, increasing the rate of heat transfer significantly.

So, bizarrely, you could do more damage to a pineapple with a moderately heated ball than a superheated one. Something to remember should you find yourself facing an army of people who didn’t know about the Leidenfrost effect and took this video to mean that pineapple armor was a good idea.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Why Can Pineapple Skin Tolerate A Metal Ball Heated To 1,000 Degrees?

Filed Under: News

Primary Sidebar

  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Interstellar Comet 3I/ATLAS Is Back From Behind The Sun – Still Not An Alien Spacecraft, Though
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version