• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Why Can Pineapple Skin Tolerate A Metal Ball Heated To 1,000 Degrees?

August 1, 2024 by Deborah Bloomfield

If something came over you and you felt compelled to drop a metal ball superheated to 1,000 degrees Celsius (1,832 degrees Fahrenheit) onto a piece of pineapple skin, you’d observe a peculiar phenomenon. Rather than burning, erupting into flames, or fizzing out of existence, the pineapple skin does, well, not much. How? It all comes down to a little something called the Leidenfrost effect.

Such a bizarre experiment was shared in a video on X. In it, we see a defenceless sliver of pineapple skin on a table, minding its own business until a super-heated glowing iron ball is dropped on top of it.

The video rolls on and the pineapple skin looks pretty much fine until eventually the ball loses its orange glow. Flipping it over reveals that the fleshy innards never even got singed, so what’s going on? Is pineapple some kind of super material we should be crafting into armor?

As much as we’d love to see that battle, the fact is that what we’re witnessing here is a nifty quirk of heat transfer. It’s something called the Leidenfrost effect and it isn’t unique to pineapples (see also: watermelons). It’s a fun phenomenon that can make water flow uphill, and you’ve probably seen it in the kitchen.

The Leidenfrost Effect acting on a water droplet.

The Leidenfrost Effect acting on a water droplet.

As explained by Seppo Louhenkilpi from the Aalto University School of Chemical Technology, heat transfer is influenced by something known as Leidenfrost temperature. Above this temperature, a surface is so hot that when it comes into contact with a liquid it forms a layer of steam so the surface and the liquid aren’t in direct contact.

Where you may have seen this before is if you drop liquid on a hot surface, it can form into little balls that appear to float. Similarly, if you put a really hot ball in water, it creates a little steam bubble so that the ball itself isn’t touching the water. Just check it out in the below video.

Advertisement

What this means for heat transfer is that on surfaces above the Leidenfrost temperature, the heat transfer rate doesn’t change much. For surfaces below the Leidenfrost temperature, the comparatively cooler hot surface can come into direct contact with the liquid, increasing the rate of heat transfer significantly.

So, bizarrely, you could do more damage to a pineapple with a moderately heated ball than a superheated one. Something to remember should you find yourself facing an army of people who didn’t know about the Leidenfrost effect and took this video to mean that pineapple armor was a good idea.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: Why Can Pineapple Skin Tolerate A Metal Ball Heated To 1,000 Degrees?

Filed Under: News

Primary Sidebar

  • Do Any Frogs Or Toads Give Birth To Live Young? Just One: Meet The Western Nimba Toad
  • Tasmanian Tigers’ Genetics May Have Doomed Them Long Before Humans Came Along
  • Scientists “Wake Up” Ancient Life That’s Been Under The Seabed For 100 Million Years
  • Measurable Brain Changes Following Cognitive Behavioral Therapy Identified For The First Time
  • “It Was Really Unexpected”: Scientists Stunned By Glowing Plants, And All It Takes Is An Injection
  • Scientists Created Gene-Edited Albino Cane Frogs To Unravel The Mysteries Of Natural Selection
  • In Vivo Vs In Vitro: What Do They Actually Mean?
  • IFLScience The Big Questions: What Will The Fossils Of The Future Look Like?
  • Finally, A Successful Starship Launch – What This Means For The Moon Landings
  • 26 Years After Launch, The ISS Will Try A New Way To Stay In Orbit Next Month
  • The World Map As You Know It Is Misleading – Now Africa Wants To Change That
  • “It’s Totally Wacky”: Oldest Known Ankylosaur Had A Kind Of Armor Never Seen In Any Vertebrate – Living Or Extinct
  • “Lost City Of The Amazon” Wasn’t Destroyed By A Volcano After All
  • Why Do Hammerhead Sharks Have A Hammerhead?
  • Neanderthals In Iberia Had Funerary Practices – They’re Just Not What We Expected
  • Monochrome Rainbows: In The Right Circumstances, Rainbows Can Look Very Strange Indeed
  • Shark Teeth Are Losing Their Bite As Ocean Acidification Takes Hold
  • Wasp “Riding A Broomstick” Among Fantastic Finalists Of Wildlife Photographer Of The Year
  • Long-Lost Sailback Houndshark Not Seen Since 1973 Rediscovered In Papua New Guinea
  • How Do You Age A Gas Giant? Jupiter’s Age Revealed By “Molten Rock Raindrops”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version