• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

World First As Mouse With 2 Dads Survives To Adulthood

January 29, 2025 by Deborah Bloomfield

For the first time, scientists have created a bi-paternal mouse – that is, a mouse with two male parents – which survived until adulthood. The breakthrough represents a huge step forward in the field and has the potential to impact many areas of science, from regenerative medicine to conservation, while furthering our understanding of mammalian reproduction.

ADVERTISEMENT GO AD FREE

Previously, researchers have created mice with two mothers; however, attempts to do the same for mice with two fathers, by deriving an egg cell from male pluripotent stem cells and fertilizing it with sperm from another male, have been less successful. The embryos develop until a point, but eventually stop growing, hindered by a process known as genomic imprinting. This happens when certain maternal or paternal genes are shut down during development, and it is a fundamental barrier to unisexual reproduction in mammals. 

To address these limitations, the team used a CRISPR/Cas9-based gene editing technology to target 20 genes responsible for imprinting.

“These genes exhibit different expression patterns depending on the parental genome and have been considered a major potential barrier to unisexual reproduction. Our method allowed us to modify these genes, overcoming the challenges that previously hindered the creation of viable bi-paternal mice,” co-corresponding author Zhi-kun Li of the Chinese Academy of Sciences told IFLScience.

In doing so, the team were able to generate bi-paternal mice that survived to adulthood – a world first.

This research is fundamental science, and while gene editing of this nature is not applicable to humans, it provides insight into the genetic barriers of unisexual reproduction in mammals.

Zhi-kun Li

“Interestingly, this was not achieved by modifying the lethal imprinted regions, which would typically result in embryo death,” Li added. “Instead, we progressively edited genes, many of which are involved in overgrowth traits, and through this cumulative approach, we were able to produce viable adults.”

ADVERTISEMENT GO AD FREE

The researchers also found that edited embryonic stem cells demonstrated improved developmental efficiency compared to controls and that bi-paternal mice had enhanced cloning efficiency compared to their wild-type counterparts – which means the novel methodology could have really useful applications.

“We believe that the gene-editing techniques we developed for imprinted genes could have significant applications in regenerative medicine and cloning research, particularly for stem cell-based therapies,” Li told IFLScience.

Two bi-paternal mice in a box

Two of the surviving bi-paternal mice.

Image courtesy of Li et al., Cell Stem Cell, 2025

The findings provide strong evidence that imprinting abnormalities are the primary barrier to unisexual reproduction in mammals – although the study is not without its limitations.

Although bi-paternal mice did develop to adulthood for the first time, more than half failed to mature, and for those that did, their survival rate was relatively low. Most of the mice that made it to maturity had altered growth and a shortened lifespan, and all of them were sterile.

ADVERTISEMENT GO AD FREE

However, with some tweaks to their method, the team are optimistic these issues could be fixed.

“This research is fundamental science, and while gene editing of this nature is not applicable to humans, the key takeaway is that our study provides insight into the genetic barriers of unisexual reproduction in mammals,” Li added. 

“It also holds potential value for regenerative medicine and conservation efforts, such as the preservation of endangered species. […] The bi-paternal mice in our study are not intended to serve as models for human reproduction but provide important clues about mammalian reproduction and genetic imprinting.”

The study is published in Cell Stem Cell.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-Manchester test likely to be postponed after India COVID-19 case
  2. EU to attend U.S. trade meeting put in doubt by French anger
  3. Soccer-West Ham win again, Leicester and Napoli falter
  4. Lacking Company, A Dolphin In The Baltic Is Talking To Himself

Source Link: World First As Mouse With 2 Dads Survives To Adulthood

Filed Under: News

Primary Sidebar

  • Unethical Experiments: When Scientists Really Should Have Stopped What They Were Doing Immediately
  • The First Humans Were Hunted By Leopards And Weren’t The Apex Predators We Thought They Were
  • Earth’s Passage Through The Galaxy Might Be Written In Its Rocks
  • What Is An Einstein Cross – And Why Is The Latest One Such A Unique Find?
  • If We Found Life On Mars, What Would That Mean For The Fermi Paradox And The Great Filter?
  • The Longest Living Mammals Are Giants That Live Up To 200 Years In The Icy Arctic
  • Entirely New Virus Detected In Bat Urine, And It’s Only The 4th Of Its Kind Ever Isolated
  • The First Ever Full Asteroid History: From Its Doomed Discovery To Collecting Its Meteorites
  • World’s Oldest Pachycephalosaur Fossil Pushes Back These Dinosaurs’ Emergence By 15 Million Years
  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Zond 5: In 1968 Two Soviet Steppe Tortoises Beat Humans To Orbiting Around The Moon
  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version