• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

World First As Stable Qubit For Quantum Computers Achieved At Room Temperature

January 17, 2024 by Deborah Bloomfield

Researchers have been able to achieve quantum coherence at room temperature – this is the ability of a quantum system to maintain a well-defined state without being affected by external disturbances. This breakthrough is an important step forward in the development of quantum computers. It is easier to work with them if you do not have to cool them down to incredibly low temperatures.

Quantum computers’ fundamental unit of information is the qubit. These tend to be made of a few particles entangled in a specific state. That means that no matter the distance you put between them, any interaction with one of them affects all the particles in the state. This is extremely useful for the computation side of things, but an entangled state is also very fragile.

Advertisement

In this work, the team achieved an entangled quintet state in electrons. They were able to craft it by using a chromophore – a dye molecule that absorbs light and emits a specific wavelength (or color), making it perfect to excite electrons in a specific way to get to the singlet. But that alone is not enough. The chromophore was embedded in a metal-organic framework (MOF), which is a nanoporous crystalline material.

The MOF was chosen to accumulate a lot of chromophores, but keep them restricted in their angle of motion. They are able to move sufficiently that as they emit color they excite electrons in the quintet state, but the motion restrictions suppress the shaking that would lead to a breakdown of the state.

“This is the first room-temperature quantum coherence of entangled quintets,” co-author Professor Yasuhiro Kobori of Kobe University said in a statement.

Advertisement

The team was able to use microwave light to check the state of the system, showing it remained in quantum coherence for over 100 nanoseconds. This is a tiny fraction of a second, but it shows that quantum coherence is achievable at room temperature.

“It will be possible to generate quintet multiexciton state qubits more efficiently in the future by searching for guest molecules that can induce more such suppressed motions and by developing suitable MOF structures,” speculates senior author Associate Professor Nobuhiro Yanai from Kyushu University. “This can open doors to room-temperature molecular quantum computing based on multiple quantum gate control and quantum sensing of various target compounds.”

Quantum sensing is a particularly exciting application. By using the extremely sensitive nature of quantum entanglement (which is usually the problem), researchers believe they can develop sensing technologies with higher resolutions and sensitivities compared to the ones currently in use.

The study is published in Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Taliban say they have entered capital of holdout Afghan region
  2. Over 60 S.Korean crypto exchanges set to suspend services next week
  3. Private groups aiding thousands in Afghanistan worry about dwindling funds
  4. Japan’s Prime Minister Eats Fukushima Fish To Prove It’s Safe

Source Link: World First As Stable Qubit For Quantum Computers Achieved At Room Temperature

Filed Under: News

Primary Sidebar

  • Golden Comet C/2025 K1 (ATLAS) Is A Chemical Rarity – And It Should Have Been Destroyed!
  • Bat Species Not Seen In 55 Years Rediscovered And Filmed For First Time – Just Look At Those Ears
  • At Last, We May Finally Have A Way To Tell Female Dinosaurs From Males
  • Giraffes In North American Zoos Have Been Hybridizing – And That’s A Problem
  • Watch: Cosmic Fireworks As Comet Fragment Traveling Over 80,000 Kilometers Per Hour Explodes In The Air
  • Why Don’t Birds Die When They Sit On 400,000-Volt Power Lines?
  • On November 13, 2026, Voyager Will Reach One Full Light-Day Away From Earth
  • Why Don’t We Ride Zebras?
  • Interstellar Object 3I/ATLAS Changed Color Again, And Shows Signs Of Non-Gravitational Acceleration
  • Record-Breaking Brightest Black Hole Flare Shines With The Light Of 10 Trillion Suns
  • The Feared Post-COVID “Disease Rebound” Of Rampaging Infections Never Really Happened
  • Why Do More People Believe Aliens Have Visited Earth?
  • This Antarctic Glacier Just Broke An Unwanted Record – Fastest Retreat In Modern History
  • New Portuguese Man O’ War Species Discovered After Warming Ocean Currents Push It North
  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version