• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

World’s Fastest Microscope Can See Electrons In Freeze-Frame Motion

August 23, 2024 by Deborah Bloomfield

The intervals of time we can capture with devices are getting shorter, opening up a window on physical phenomena we have yet to study. Researchers at the University of Arizona have announced the development of the world’s fastest electron microscope, which can capture an interval of a single attosecond.

Advertisement

An attosecond is a mindboggling fraction of time. It is equivalent to one billionth of a billionth of a second. To make a comparison, the number of them in a second is roughly the same as the number of seconds since the universe began 13.7 billion years ago.

Electron microscopes use lasers to generate a pulsed beam of electrons. These beams are used to see the study subject and the shorter they are, the faster and better the image. Up to this device, the beams were a few attoseconds long, so if they were used to study the motion of a separate electron, they’d miss part of the action. At one attosecond, electron motion can be captured in freeze frames as the speed of the beam matches that of the target electron.

“When you get the latest version of a smartphone, it comes with a better camera,” senior author Mohammed Hassan, associate professor of physics and optical sciences, said in a statement. “This transmission electron microscope is like a very powerful camera in the latest version of smartphones; it allows us to take pictures of things we were not able to see before – like electrons. With this microscope, we hope the scientific community can understand the quantum physics behind how an electron behaves and how an electron moves.”

This breakthrough builds on decades of research in attosecond physics, which was honored last year as three of its pioneers – Pierre Agostini, Ferenc Krausz, and Anne L’Huillier – received the Nobel Prize in Physics. Despite the years of work, the field remains pretty young and with so much potential yet to be achieved.

“It’s still at the beginning and it’s still very much basic research. But the idea is we start to control [electrons]. We are able to measure the motion of electrons in matter. And maybe, possibly we can control a little bit this motion. And this could be important to possibly control some chemical process, possibly biological process later on,” Nobel Laureate Professor L’Huillier told IFLScience in an exclusive interview.

Advertisement



The new electron microscopy approach uses ultrashort light pulses, the basis of attosecond physics, together with an electron beam pulse. It is the careful synchronization of the pulses that has been able to deliver the ability to observe the ultrafast processes at the atomic level.

“The improvement of the temporal resolution inside of electron microscopes has been long anticipated and the focus of many research groups, because we all want to see the electron motion,” Hassan said. “These movements happen in attoseconds. But now, for the first time, we are able to attain attosecond temporal resolution with our electron transmission microscope – and we coined it ‘attomicroscopy.’ For the first time, we can see pieces of the electron in motion.”

The study is published in the journal Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. A curtain divides male, female students as Afghan universities reopen
  2. Barra: GM will make ‘substantial shifts’ in supply chain over chips
  3. Higher rates set to protect emerging market currencies from Fed taper: Reuters poll
  4. Exclusive: How To Snap The Shortest Moments In Time

Source Link: World’s Fastest Microscope Can See Electrons In Freeze-Frame Motion

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version