• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

World’s Smallest, Tightest Knot Ever Created Is Just 54 Atoms Long

January 23, 2024 by Deborah Bloomfield

Scientists have broken the record for the smallest and tightest molecular knot, creating a chemical that self-assembles into a knot with the formula [Au6{1,2-C6H4(OCH2CC)2}3{Ph2P(CH2)4PPh2}3]. The makers highlight the six gold atoms at the start by referring to the entire molecule as Au6.

The way a molecule affects others depends not just on the elements it’s composed of, but on the shape these take on. Complex molecules can be folded in vast numbers of ways, and sometimes only one of these will produce the desired biological effects. Predicting and controlling such folding is considered one of the hardest problems in science, and one where computers are only just starting to displace humans. 

Advertisement

Knots represent the extreme end of this. It’s not easy to tie even long thin strands of atoms into knots because you can’t just grab the ends like pieces of rope on a sailboat. Finding ways to make molecules knot can help develop humanity’s capacity for more practical knotting. Since DNA, RNA, and many proteins knot without human intervention, performing knotting of our own helps us understand these vital molecules’ behavior.

Knots are categorized by the number of crossings. Au6 forms the simplest kind of non-trivial knot, with three crossings, and is known as a trefoil. 

Chemists cannot measure the tightness of molecular knots in a physical sense, so they use the number of atoms in the knotted strand, dividing by the number of crossings, as a proxy. The fewer atoms per crossing, the tighter a knot is.

Au6, produced by a team including Professor Richard Puddephatt of the University of Western Ontario, has just 54 atoms in its backbone. This compares with the previous record for a metallaknot of 69, while no organic trefoil knot has been achieved with fewer than 76 atoms. Much larger knots, with far more crossings, have achieved tightness scores as low as 24, but Au6’s 54 atoms and tightness score of 18 easily beats all. Theoretical models suggest that 50 atoms may be a minimum for a knot.

Advertisement

Most molecular knot-making involves creating ever more complex knots, but there is a niche subfield in producing ever-tighter knots, as the below video accompanying an earlier record proves. 



Small knots have generally been made by using metal ions to draw helical chains into a targeted shape and then pulling the metals out to leave a knot behind. It’s a stepping stone to stronger and lighter plastics, among other things.

Au6, however, is made differently, and Puddephatt told New Scientist it was an accident. They were mixing two liquids containing different molecules to make structures with interlinked, but not knotted, chains called catenanes. Using X-ray crystallography to study the product, they found some of the catenanes had self-assembled into trefoil knots.

Advertisement

“We’ve made many combinations of gold acetylides and phosphine ligands and they’ve never before given a trefoil knot,” said Puddephatt. “We hadn’t predicted that this would happen in this case, so it was serendipity.” He also acknowledged the process was not fully understood, although it is repeatable and has potential for use in more complex situations.

The study is published in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-‘Experienced’ Medvedev the last hurdle in Djokovic’s pursuit of history
  2. Bulk of S&P 500 embraces sustainable accounting standard, foundation says
  3. PideDirecto bags $5.25M; aims to be ‘Shopify with 30-minute deliveries’
  4. Ancient Near-Primates Oldest Ever Found Above Arctic Circle

Source Link: World’s Smallest, Tightest Knot Ever Created Is Just 54 Atoms Long

Filed Under: News

Primary Sidebar

  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • The World’s Largest Living Reptile Can “Surf” Over 10 Kilometers To Get Between Islands
  • In 1962, A Geologist Went Into A Cave. 2 Months Later, He’d Accidentally Invented A New Field Of Biology.
  • The Ancient Remains Of A 3-Ton Shark Indicate A New Point Of Origin For Gigantic Lamniform Sharks
  • The Biggest Landslide In Recorded History Happened Quite Recently And Pretty Close To Home
  • Meet The Amami Rabbit, A Goth Bunny That’s Also A Living Fossil
  • The Largest Native Terrestrial Animal In Antarctica Is Both Smaller And Tougher Than You’d Expect
  • The Freaky Reason Why You Should Never Store Tomatoes And Potatoes Together
  • Hominin Vs. Hominid: What’s The Difference?
  • Experimental Alzheimer’s Drug Could Have The Power To Halt Disease Before Symptoms Even Start
  • Al Naslaa: What Made This Enormous Boulder In Saudi Arabia Split In Two? Nobody’s Quite Sure
  • The Amazon Is Entering A “Hypertropical” Climate For The First Time In 10 Million Years
  • What Scientists Saw When They Peered Inside 190-Million-Year-Old Eggs And Recreated Some Of The World’s Oldest Dinosaur Embryos
  • Is 1 Dog Year Really The Same As 7 Human Years?
  • Were Dinosaur Eggs Soft Like A Reptile’s, Or Hard Like A Bird’s?
  • What Causes All The Symptoms Of Long COVID And ME/CFS? The Brainstem Could Be The Key
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version