• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Cellino is using AI and machine learning to scale production of stem cell therapies

September 22, 2021 by David Barret Leave a Comment

Cellino, a company developing a platform to automate stem cell production, presented today at TechCrunch Disrupt 2021 to detail how its system, which combines A.I. technology, machine learning, hardware, software — and yes, lasers! — could eventually democratize access to cell therapies. It aims to bring down costs associated with the manufacturing of human cells, while also increasing yields.

Founded by a team whose backgrounds include physics, stem cell biology, and machine learning, Cellino operates in the regenerative medicine industry. This space is currently undergoing a revolution, where new developments in gene and cell therapies could lead to breakthrough cures for a number of leading diseases. For example, the use of personalized human retinal cells could be transplanted to halt or reverse age-related macular degeneration, which can cause blindness. But today, such cell therapies are out of reach for most people because the process of cell production hasn’t been automated or made scalable and efficient.

Instead, human cells being used now in these clinical trials are mostly being made by hand by scientists who are looking at cells and evaluating — using their many years of training and expertise — which cells are low quality and need to be removed. They then scrape away those unwanted cells with a pipette tip. The process, as you can imagine, is time-consuming and produces only a small yield. In this manual process, you’d see a yield of about 10% to 20% of cells that would be able to pass the final quality assurance tests required for human transplant.

Cellino is working to improve this process in order to produce more cells of higher quality. Its goal is to push the yield to at least 80% over the next three years.

To do so, Cellino’s system is automating all the human steps in the production process using machine learning techniques.

To identify which cells are high quality or low quality, the company is collecting large training data sets where it’s teaching algorithms to make determinations about cell quality based on a variety of factors. This includes the cell morphology — meaning, the shape, size, and density of cells. Fluorescence-based surface markers can also be used to identify other factors of importance to the line of cells being produced, like the location of proteins on the cell, for example.

By using machine learning and AI to do the identification based on standard and well-accepted biological assays used by the FDA, the system could move away from human annotation and the variability that introduces into the process of human cell production.

After Cellino’s software has identified which low-quality cells need to be removed, it then uses a laser to target them. The laser creates large enough cavitation bubbles to kill the cell, but it’s done in a highly localized way where you’re not harming the neighboring cells, as thermal heat does not dissipate to the nearby cells. This is also a more precise technique than the manual method. (Cellino’s system has a 5-micron resolution, while cells are 10-15 microns in size). This results in a throughput of about 5,000 cells per minute, which is highly efficient compared with manual techniques.

Over time, this automation and efficiency could bring the cost down from nearly a million dollars per patient, which is what clinicians have to pay today to run a clinical trial, when outsourcing cell production. Cellino aims to get the cost down into the tens of thousands of dollars over time.

By scaling cell production, personalized cell therapies could also help a broader range of patients compared with other techniques relying on banks of stem cells. These aren’t always genetically diverse samples, leaving smaller ethnic groups out of the progress being made in this space. Banked cells also require recipients to take immunosuppressants, as the cells aren’t your own and the body may reject them.

The use of lasers is an idea developed by Cellino co-founder and CEO Nabiha Saklayen, who patented an invention in cellular laser editing while at Harvard earning her Ph.D. in Physics. She was encouraged to turn the technology into a startup by her collaborators, who included had leading biologists like George Church and David Scadden.

“Not all scientists become entrepreneurs, and I became an entrepreneur because I had an amazing support network around me,” notes Saklayen, of the push to join the startup space. She immediately recruited Marina Madrid, an applied physicist she had worked with for years on the co-invention of laser-based intracellular delivery techniques, as her other co-founder. To gain more mentorship about growing a startup, Saklayen turned to the Boston area startup ecosystem.

“I didn’t know anything about startups. I wanted to work with people who knew how to build companies, how to commercialize technology, how to build instruments —  and the Boston ecosystem is fantastic in that way. So I started connecting with lots of people in those early weeks — anybody that was in the biotech realm or Harvard Business School,” Saklayen explains.

This led her to Cellino co-founder and CTO Mattias Wagner, who had built companies before in the optics and instrumentation space.

“That’s how the founding team came together. It was very complimentary because Marina and I were co-inventors of the original technology that inspired the platform and Mattias brought this tremendous background in semiconductors and optical instrumentation,” says Saklayen.

Since its 2017 founding, Cellino has gone on to raise $16 million in seed funding in a round co-led by The Engine and Khosla Ventures, with participation from Humboldt Fund and 8VC.

The company is now collaborating with the NIH on compatibility studies. Currently, that means Cellino is making stem cells on its system which it’s then comparing with the ones made at the NIH that are already being tested in humans for personalized cell therapies for retinal diseases. Cellino later hopes to use its system to address areas like Parkison’s, muscle disorders, and skin grafts, among others.

The company wanted to present at TechCrunch Disrupt to share more about what it’s building and to source new talent.

“For me, it’s about talking about this idea around democratization and industrialization of cell therapies. I really want to get that message out because that is the movement we need to drive over the next decade for all of these cell therapies to be accessible to all patients,” says Saklayen.

“Cellino’s angle is also very unique in the sense that, because we have this automated system to manufacture human cells, our system could make cells for every human being — in this country, in the world,” she continues. “And there are a lot of cell therapy approaches that are looking to use off-the-shelf cells and off-the-shelf therapies, which will only work for certain parts of the population. As the U.S. becomes more diverse, ethnically, we need personalized solutions for everybody.”

 

Source Link Cellino is using AI and machine learning to scale production of stem cell therapies

David Barret
David Barret

Related posts:

  1. NBC fetches $6.5 million for Super Bowl ads, nearly sells out Beijing Olympics spots
  2. Shanghai plans data exchange to help boost efficiency in manufacturing
  3. Digital therapeutics startup Neuroglee raises $10M to help people with neurodegenerative conditions
  4. United says more than 97% of U.S. employees are vaccinated

Filed Under: News

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Very First Humans To Make And Use Tools Imported Their Stones 3 Million Years Ago
  • 300,000-Year-Old Skull Shows Neanderthals Lived Alongside Another Ancient Human Ancestor
  • “An Underwater Photographer’s Dream”: Watch Big-Bellied Seahorses Passing Eggs Between Each Other
  • The Largest Moon In The Solar System Could Be A Dark Matter Detector
  • First Insect Proven To Use Milky Way For Orientation Uses Its Superpower To Push Big Balls Of Poop
  • How An Eclipse And One Of The World’s Most Dangerous Volcanoes Changed Chemistry For Good
  • Earendel: The Most Distant Star Ever Seen Might Not Be What We Thought
  • Unique White Dwarf Heavier Than The Sun Is Hiding A Merger In Its Past
  • Ancient Crater Lakes Rewrite Saharan Climate History, And Possibly Civilization’s Origins
  • Rare Crystalline Gold Accounts For Just 1 Percent Of The World’s Gold, And It’s Beautiful
  • First-Of-Its-Kind Footage Shows Human Embryo Implantation In Real-Time
  • Meet Splash: The World’s First Search-And-Rescue Otter Hunting For Missing People In Florida
  • New Species Of Early Human Lived Alongside The Oldest Known Homo, We Still Don’t Fully Know What Long COVID Actually Is, And Much More This Week
  • New AI Model May Predict Success Of Future Fusion Experiments, Saving Money And Fuel
  • Orange Crocodiles, New Human Species, And Death By Meteorite
  • The World’s Largest Terrestrial Carnivore Has Clear Fur And Black Skin, But You Wouldn’t Know It
  • Deep-Sea Explorers Found A Sunken Whale Carcass – And Watched A Wild Banquet Unfold
  • Does Jupiter Have A Solid Core, And If So, How Big Is It?
  • Trump’s Executive Order To Slash Environmental Regulations For Space Launches: We Look At The Risks And Realities
  • An Underwater Volcano Off The US Coast Is Set To Erupt in 2025, Raising Excitement And Worry
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version