• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Complex Organic Molecules Form In Interstellar Space

September 15, 2023 by Deborah Bloomfield

Building blocks for life have been found in meteorites, apparently having formed without the benefits of the complex chemistry planets can support. The Earth may have been seeded with the necessary ingredients this way. Evidence of some of these complex organic molecules has been found in the vast gaps between the stars. Now lab-based studies offer an explanation of how they could form there.

Even before life existed, Earth had many features that could have assisted the formation of complex organisms. The Sun and hydrothermal vents provided energy. Water could serve as a solution, and rain and wind moved things around. It’s much harder to work out how carbon-based molecules could form in interstellar space, but we know from spectra that many of them do.

Advertisement

Japanese researchers have mimicked conditions in interstellar clouds in the lab, revealing the vital role the surfaces of ice grains play. 

Carbon is just one element among almost 100 that exist naturally – yet the overwhelming majority of known molecules not only include it, but are based around bonded chains of carbon atoms. Carbon’s chemistry allows the build-up of much larger molecules than any other element, so it is just as well so much of it is formed when stars stop fusing hydrogen and move on to helium.

Yet just because carbon can form complex molecules does not mean it automatically will. In the vastness of star-forming clouds, atoms are so dispersed they seldom come in contact with each other. Finding a compatible partner is harder than at a really bad nightclub. 

It’s thought that ice grains may serve as a sort of atomic hook-up app, bringing carbon molecules together, but for this to work they would need to be able to diffuse across the grains’ surface. No one has been sure under what circumstances this might be possible.

Advertisement

Professor Masashi Tsuge of Hokkaido University and colleagues have tried to replicate the conditions in gas clouds such as the Orion molecular cloud complex. This involved cooling the materials known to exist in these clouds to temperatures not far above absolute zero.

“In our studies, recreating feasible interstellar conditions in the laboratory, we were able to detect weakly-bound carbon atoms diffusing on the surface of ice grains to react and produce C2 molecules,” Tsuge said in a statement. 

Tsuge and colleagues found that diffusion can occur at temperatures above 30 Kelvin (-405 °F, or -243 °C). The activation energy required to allow carbon atoms to diffuse across ice is low enough that theoretically, even 22 Kelvin (-420 °F, or -251 °C) should be sufficient. 

The temperatures at which carbon molecules diffuse on the surface of ice grains, and bond to form C2 molecules

The temperatures at which carbon molecules diffuse on the surface of ice grains, and bond to form C2 molecules

Image Credit: Masashi Tsuge, et al. Nature Astronomy. September 14, 2023

Even this is warmer than regions of space far from any star. However, Tsuge notes that large areas of the protoplanetary disks around very young stars reach these temperatures. Even though very young stars have yet to reach peak brightness, they can still provide a little warmth, and it seems a little is all carbon needs.

Advertisement

It might take 100,000 to 10 million years for two carbon atoms to make the glacially slow migration across a hundred nanometers to meet, but these atoms have plenty of time.

Once the carbon bond is formed, more atoms can get added by the same diffusion process, building up steadily more extensive carbon skeletons, to which other atoms can attach.

Most carbon atoms within a cloud will not follow this path, the team notes. Instead, they will encounter hydrogen or oxygen atoms and form methane or carbon monoxide, limiting the prospects for future growth. Even those who land on the ice grain surface unattached will often form formaldehyde (CH2O) instead. 

However, enough combine to form long carbon chains for us to detect the outcomes, and perhaps to be here in the first place.

Advertisement

The study is published in the journal Nature Astronomy

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Harvard University to end investment in fossil fuels
  2. North Korea says call to declare end of Korean War is premature
  3. Asian stocks fall to near 1-year low as oil prices stoke inflation worries
  4. “Unique” Medieval Christian Art Discovered By Accident In Sudan Desert

Source Link: How Complex Organic Molecules Form In Interstellar Space

Filed Under: News

Primary Sidebar

  • Could One Drill A Hole From One Side Of The Earth And Come Out The Other Side?
  • Africa Is Splitting Into Two Continents And A Vast New Ocean Could Eventually Open Up
  • Which Is Better: Hot Or Cold Showers?
  • Is Gustave The Killer Croc Dead? Notorious Crocodile Accused Of 300 Deaths Is Surrounded By Legend
  • Why Do We Have Two Nostrils, Instead Of One Big Nose Hole?
  • Humans Have Accidentally Created A Barrier Around The Earth
  • Something Just Crashed Into The Moon, First-Known Instance Of Prehistoric Bees Nesting In Fossil Skulls, And Much More This Week
  • Interstellar Comet 3I/ATLAS Carries The Key Molecules For Life In Unusual Abundance– What Does That Mean?
  • Want Your Career To Take The Next Step? How Scientific Conferences Can Be A Catalyst For Change
  • Why Do Little Birds Always Ride On Rhinos? It’s An Incredibly Deep Relationship
  • The World’s Rarest Great Ape Just Got Even Rarer
  • This Is The First Ever Map Of The Entire Sky In An Incredible 102 Infrared Colors
  • Was Jesus Christ Actually Born On December 25?
  • Is It True There Are Two Places On Earth Where You Can Walk Directly On The Mantle?
  • Around 90 Percent Of People Report Personality Changes After An Organ Transplant – Why?
  • This Worm Quietly Lived In A Lab For Decades, But They Had No Idea Just How Old It Truly Was
  • Fewer Than 50 Of These Carnivorous “Large Mouth” Plants Exist In The World – Will Humans Drive Them To Extinction?
  • These Are The Best Fictional Spaceships, According To Astronauts – What Are Yours?
  • Can I See Comet 3I/ATLAS From Earth During Its Closest Approach Today? Yes, Here’s How
  • The Earliest Winter Solstice Rituals Go All The Way Back To The Stone Age
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version