• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

New Carbonated Concrete Can Store CO2 While Still Being Strong

June 29, 2024 by Deborah Bloomfield

Engineers at Northwestern University have found a new concrete manufacturing process that stores carbon dioxide (CO2) from the atmosphere by using a carbonated solution. The concrete is just as strong and durable as traditional versions and is easy to make.

Advertisement

When it comes to types of water – still or carbonated – you probably think about the options offered by a waiter in a restaurant. However, these two options also play a role in the construction industry.

Advertisement

Traditionally, concrete is made through a mix of cement and water, which makes a paste. This paste is then mixed with aggregates in the form of sand and gravel. As these ingredients mix, they harden and bind with the aggregate to create the solid mass that we use in construction.

However, this is not a green industry. The ordinary production of Portland cement, the most common type, is a massive contributor to CO2 emissions. In fact, the global production of cement is the third-largest source of anthropogenic carbon emissions (8 percent), only behind fossil fuels and land-use change.

But there are alternative options. In fact, carbonated concrete has a high potential to store CO2 because of its inherent alkalinity, which can turn the greenhouse gas into solid crystals consisting of mostly calcium carbonate (CaCO3). These crystals have a longer lifespan than structures made of cement, so they represent an ideal way to store CO2.  

The idea of using this solution was first posited in the 1970s but received limited attention until recent years.

Advertisement

The process of storing CO2 in such a way comes in two forms: hardened concrete carbonation or fresh concrete carbonation. In the former, solid concrete blocks are injected with CO2 gas at high pressures, and in the latter process, the gas is injected into the mixture when water, cement, and aggregates are combined.

However, the techniques for achieving these processes have their limitations. They have both had low carbon capture efficiency despite how often they are used, and the process also weakens the concrete. That is, until now.

In laboratory experiments, Northwestern University engineers achieved a CO2 sequestration efficiency of up to 45 percent. This means that nearly half of the CO2 injected into the concrete during manufacturing was both captured and stored.

“The cement and concrete industries significantly contribute to human-caused CO2 emissions,” said Northwestern’s Alessandro Rotta Loria, who led the study detailing the solution, in a statement.

Advertisement

“We are trying to develop approaches that lower CO2 emissions associated with those industries and, eventually, could turn cement and concrete into massive ‘carbon sinks.’ We are not there yet, but we now have a new method to reuse some of the CO2 emitted as a result of concrete manufacturing in this very same material. And our solution is so simple technologically that it should be relatively easy for industry to implement.”

So how did they do it? In their approach, the engineers used the fresh concrete process but, rather than injecting the gas into the mix at the same time, they injected it into the water alone with a small amount of powder. By adding this carbonated suspension to the rest of the ingredients, they had created a concrete that absorbed CO2 during its manufacturing.

“The cement suspension carbonated in our approach is a much lower viscosity fluid compared to the mix of water, cement and aggregates that is customarily employed in present approaches to carbonate fresh concrete,” Rotta Loria added.

“So, we can mix it very quickly and leverage a very fast kinetics of the chemical reactions that result in calcium carbonate minerals. The result is a concrete product with a significant concentration of calcium carbonate minerals compared to when CO2 is injected into the fresh concrete mix.”

Advertisement

If this wasn’t an achievement in itself, further analysis showed that the new concrete could rival the strength and durability of regular concrete.

“A typical limitation of carbonation approaches is that strength is often affected by the chemical reactions,” said Rotta Loria. “But, based on our experiments, we show the strength might actually be even higher. We still need to test this further, but, at the very least, we can say that it’s uncompromised. Because the strength is unchanged, the applications also don’t change. It could be used in beams, slabs, columns, foundations — everything we currently use concrete for.”

“The findings of this research underline that although carbonation of cement-based materials is a well-known reaction, there is still room to further optimize the CO2 uptake through better understanding of the mechanisms tied to materials processing,” study co-author Davide Zampini concluded.

The study is published in Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Rape drama in medieval France reunites Affleck, Damon on big screen
  2. Wall Street eyes four more years for Powell at Fed
  3. Soccer-Gavi gives glimpse of Spain’s future with debut showing
  4. What Is The Heaviest Object In The Universe?

Source Link: New Carbonated Concrete Can Store CO2 While Still Being Strong

Filed Under: News

Primary Sidebar

  • Sheep And… Rhinos? There’s A Very Cute Reason You See Them Hanging Out Together
  • Why Does The Latest Sunrise Of The Year Not Fall On The Winter Solstice?
  • Real Or Fake Christmas Trees: Which Is Better For The Environment?
  • “Cosmic Dipole Anomaly” Suggests That Our Universe May Be “Lopsided”, Seriously Challenging Our Understanding Of The Cosmos
  • Which Animals Mate For Life?
  • Why Is Rainbow Mountain So Vibrantly Colorful?
  • “It’s An Incredible Feeling”: Salty Air Bubbles In 1.4-Billion-Year-Old Crystals Reveal Secrets Of Earth’s Early Atmosphere
  • These Were Some Of The Most Significant Scientific Experiments Of 2025
  • Want To Know What 2026 Has In Store? The Mesopotamians Have A Tip, But You’re Not Going To Like It
  • Can Woolly Bear Caterpillars Predict Winter Weather? No – But They Do Have A Clever Way To Survive The Freeze
  • Is Showering More Hygienic Than Bathing – What Does The Science Say?
  • Why Is Christmas Called Xmas?
  • Stardust Didn’t Reach The Solar System The Way We Thought, So How Did It Get Here?
  • This Might Be The First Time We’ve Ever Seen A Gravitational Wave Event Gravitationally Lensed
  • Carnivorous, Enormous, And Corpse-Scented: What Are The Rarest Plants On Earth?
  • What Are Nieves Penitentes? The Strange Icy Spikes Found In Some Of Earth’s Most Alien Landscapes
  • What Killed One Of The World’s Biggest Crocs? A Necropsy Of Cassisus Suggests A Hidden Killer
  • Avi Loeb Says Interstellar Object 3I/ATLAS Is “Most Likely Natural” As It Heads Away From Earth
  • For The First Time, Moths Have Been Captured On Camera Feeding On Moose Tears
  • USGS Camera Catches A “Dirty Eruption” At Yellowstone’s Black Diamond Pool
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version