• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Physicists Find A Way Around Heisenberg’s Uncertainty Principle, One Of The Most Frustrating Concepts In Physics

October 1, 2025 by Deborah Bloomfield

A team of physicists say they have found a way to sidestep Heisenberg’s uncertainty principle, one of the more troublesome and irritating rules of our universe.

Heisenberg’s uncertainty principle, for the uninitiated, states that it is not possible to exactly measure or calculate both the position and momentum of an object at the same time. 



With macroscopic objects, for example a basketball or Danny DeVito, the principle doesn’t matter too much. For example, you could measure Danny DeVito’s position using light, and know that the light you used hasn’t pushed him hard enough for you to be uncertain about his momentum. But in the quantum realm, it becomes a real problem.

Before we measure an electron’s position, its wavefunction is spread out over an area, giving us probabilities about where the electron will be found. Hit an electron with light to measure its position, and its momentum increases, shrinking its wave function and localizing it around its position. But with that, you lose information about the electron’s momentum as you impart energy into the electron, altering it. The more precise you want to be about one property, the less you know of the other. The more you know of the object’s position, the less you know about its speed and mass, and vice versa. 

This principle is as tested as it is frustrating, and has held up nearly a century after its discovery by Werner Heisenberg in 1927. But a team of physicists from the UK and Australia say that with a few clever little tradeoffs, it is possible to sidestep the principle and gain precision about both properties at a level better than the “standard quantum limit”.

“Imagine a clock with only one hand. If it’s the hour hand, we know the hour exactly but only roughly know the minutes. If it’s the minute hand, we can read minutes precisely but do not know the hour,” Tingrei Tan and Christophe Valahu, two authors on the paper, explain in a piece for The Conversation.

“We apply this same idea to quantum measurements. We redistribute the uncertainty so that we can simultaneously track small changes in position and momentum around a chosen point, even if we do not know the absolute location of the point itself. With this, we can detect very tiny changes in both position and momentum at once, beyond the limit of any classical sensor.”

The idea, first proposed in 2017, has now been performed experimentally using a technique the team originally developed for their work on quantum computers.

“We performed our experiment using a trapped ion. This is a single electronically charged atom held in place and controlled with electric and magnetic fields,” Tan and Valahu explained. “We prepared the ion in ‘grid states’, a kind of quantum state originally developed for error-corrected quantum computing. We then used these states as a sensor to measure tiny signals, in a way similar to how one would detect errors in a quantum computer.”

Using these methods, the team was able to measure uncertainty in a signal of around half a nanometer, or about the size of an atom, as well as extremely small forces, beyond what you would feasibly expect given the uncertainty principle.

“We haven’t broken Heisenberg’s principle. Our protocol works entirely within quantum mechanics,” Dr Ben Baragiola, co-author from RMIT, added in a statement. “The scheme is optimised for small signals, where fine details matter more than coarse ones.

“Think of uncertainty like air in a balloon,” Tan, a Sydney Horizon Fellow in the Faculty of Science, added. “You can’t remove it without popping the balloon, but you can squeeze it around to shift it. That’s effectively what we’ve done. We push the unavoidable quantum uncertainty to places we don’t care about (big, coarse jumps in position and momentum) so the fine details we do care about can be measured more precisely.”

While it is good to kick Heisenberg’s uncertainty principle fast in its poorly-defined nuts, the study has many practical implications too, with possible applications in everything from medical imaging to investigating fundamental physics.

“Just as atomic clocks transformed navigation and telecommunications,” Valahu added, “quantum-enhanced sensors with extreme sensitivity could enable whole new industries.”

The study is published in Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. The Taliban are lying, France’s foreign minister says
  2. Yahoo has built a new calendar app called Day, and it’s recruited the co-founder of Sunrise to design it
  3. You Can Watch The First-Ever Live Stream From Mars This Week
  4. Trench 94: The US Navy’s Nuclear Submarine Graveyard

Source Link: Physicists Find A Way Around Heisenberg's Uncertainty Principle, One Of The Most Frustrating Concepts In Physics

Filed Under: News

Primary Sidebar

  • World’s Oldest Pygmy Hippo, Hannah Shirley, Celebrates 52nd Birthday With “Hungry Hungry Hippos”-Themed Party
  • What Is Lüften? The Age-Old German Tradition That’s Backed By Science
  • People Are Just Now Learning The Difference Between Plants And Weeds
  • “Dancing” Turtles Feel Magnetism Through Crystals Of Magnetite, Helping Them Navigate
  • Social Frailty Is A Strong Predictor Of Dementia, But Two Ingredients Can “Put The Brakes On Cognitive Decline”
  • Heard About “Subclade K” Flu? We Explore What It Is, And Whether You Should Worry
  • Why Did Prehistoric Mummies From The Atacama Desert Have Such Small Brains?
  • What Would Happen If A Tiny Primordial Black Hole Passed Through Your Body?
  • “Far From A Pop-Science Relic”: Why “6 Degrees Of Separation” Rules The Modern World
  • IFLScience We Have Questions: Can Sheep Livers Predict The Future?
  • The Cavendish Experiment: In 1797, Henry Cavendish Used Two Small Metal Spheres To Weigh The Entire Earth
  • People Are Only Now Learning Where The Titanic Actually Sank
  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version