• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Scientists May Finally Have Answered Why The Most Important Meteorites Are So Rare

April 14, 2025 by Deborah Bloomfield

The type of meteorites that could have been crucial to the origins of life are very rare, but the asteroids they come from are common. Astronomers have long had an explanation for this paradox, but couldn’t prove it. New research shows that explanation is only half the answer, with exposure to the Sun providing the rest.

Carbonaceous chondrite meteorites are rich in water and amino acids, the building blocks of life. With both expected to have been wiped from the surface of the Earth during the period when it was a magma ocean, the delivery of each in these meteorites has been considered likely to be key to us being here.

However, carbonaceous meteorites have been estimated to make up around 5 percent of meteorites, a limited supply for something so crucial. That rarity frustrates teams eager to study them, which is why the best specimens are so prized. However, surveys of the asteroid belt and inner Solar System have shown that the asteroids from which such meteorites come, including Bennu and Ryugu, are common.

Most meteorites come from families that can be matched to asteroids that moved out of the main belt some time ago and ventured into the inner Solar System. Models of these migrations suggest 50 percent of the objects hitting the top of Earth’s atmosphere should be carbon-rich

The obvious explanation is that the carbon-rich objects are weaker than other meteor types, and more likely to burn up in the atmosphere. Still, it is a big drop from 50 percent to 5. Dr Hadrien Devillepoix of Curtin University is part of a team that set out to explore the question. They used a sample of 7,982 meteorites, and data from cameras observing almost 8,000 objects hitting the atmosphere, particularly in deserts, to see what was going on.

The team found that carbonaceous meteorites are even rarer than usually estimated, just 4 percent of the sample. The asteroids from which they come are more common at the top of the atmosphere, but not as much as our asteroid surveys suggest. The discrepancy is explained by the fact that even before they have hit the atmosphere, carbonaceous asteroids are more likely to have been broken up into pieces so small they don’t cause a fireball, let alone make it to ground.

“We’ve long suspected weak, carbonaceous material doesn’t survive atmospheric entry,” Devillepoix said in a statement. “What this research shows is many of these meteoroids don’t even make it that far: they break apart from being heated repeatedly as they pass close to the Sun.”

The team reconstructed the orbits of the objects hitting the atmosphere based on their angles of impact. They realised there was a shortage of medium-sized carbonaceous objects whose orbits would have taken them close to the Sun. Meanwhile other asteroid types could stand the heat of the same locations much better. The team attribute carbonaceous objects’ vulnerability to heat exposure to the presence of volatiles (materials that easily turn to gas). Carbonaceous asteroids may survive a single passage relatively close to the Sun, but repeated exposure, even at distances similar to that of Venus, wears them down.

The Sun’s heat and the Earth’s atmosphere create a double filter, making it quite a feat for any carbon-rich objects to make it to ground at all.

That explains why there is so much excitement when a fresh carbonaceous chondrite is found. “Carbon-rich meteorites are some of the most chemically primitive materials we can study — they contain water, organic molecules and even amino acids,” said Dr Patrick Shober of the Paris Observatory.

Devillepoix told IFLScience the findings may not have much implication in terms of meteorites’ capacity to seed life. Devillepoix noted the remains of the asteroids continue to orbit after the Sun has broken them up, and many still hit the Earth’s atmosphere as dust. Any water they carry will be absorbed in the atmosphere and eventually fall as rain. “It doesn’t matter if it is a large object or broken up in terms of water transport,” Devillepoix said. On the other hand, he is not sure whether amino acids would survive encounters when delivered in that form.

Orbit tracing also revealed that asteroids that had been tidally disrupted by passing close to a planet were particularly weak, but Devillepoix told IFLScience the team still doesn’t understand why.

The researchers were alerted to the solar filter by the velocities with which objects hit the atmosphere. It’s long been assumed that high velocity increases the chance an object will burn up, rather than making it to ground, just as the Apollo 13 crew needed to avoid hitting the atmosphere at too steep an angle. The team was surprised to discover that objects that dropped meteorites averaged slightly greater speeds than those that didn’t. As Devillepoix explained to IFLScience, “Things that get closer to the Sun will be more likely to impact Earth at higher velocity.” With Sun-grazing having already weeded out the weaker asteroids, those that have survived such orbits are also more likely to get through the atmosphere.

Devillepoix added there could be implications from this work for Planetary Defense. Carbonaceous asteroids are much darker than others, making it likely there are more of them lurking undetected, particularly close to the Sun where they are hard to see. Understanding their frequency could help us calculate risk.

The research is open access in Nature Astronomy.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Realme Pad to launch on September 9 – here’s what we know
  2. Soccer-Bullet point previews of Premier League matches
  3. World’s Largest Offshore Wind Farm Is Finally Operational
  4. What Are “Angel Numbers” Like 111, And What Is The Scientific Reason Behind Them?

Source Link: Scientists May Finally Have Answered Why The Most Important Meteorites Are So Rare

Filed Under: News

Primary Sidebar

  • Polar Vortex Patterns Explain Winter Cold Snaps Against Background Warming Trend
  • Scientists Tracked An Olm For 2,569 Days And It Did Not Move An Inch
  • Look Out For “Fireballs”: The Best Meteor Shower Of 2025 Is About To Commence, According To NASA
  • Why Do Many Large Language Models Give The Same Answer To This “Random” Number Query?
  • Adidas Jabulani: The World Cup Football So Bad NASA Decided To Study It
  • Beluga Whales Shake Their Blob-Like Melons To Say Hello And Even Woo A Mate, But How?
  • Gravitational Wave Detected From Largest Black Hole Merger Yet: “It Presents A Real Challenge To Our Understanding Of Black Hole Formation”
  • At Over 100 Years Of Age, The World’s Oldest Elephant Passes Away In India
  • Ancient Human DNA Reveals Earliest Zoonotic Diseases Appeared 6,500 Years Ago
  • Boys Are Better At Math? That Could Be Because School Favors Them Over Girls
  • Looptail G: Most People Can’t Recognize A Letter You Have Seen Millions Of Times
  • 24-Million-Year-Old Protein Fragments Are Oldest Ever Recovered, A Robot Listened To Spoken Instructions And Performed Surgery, And Much More This Week
  • DNA From Greenland Sled Dogs – Maybe The World’s Oldest Breed – Reveals 1,000 Years Of Arctic History
  • Why Doesn’t Moonrise Shift By The Same Amount Each Night?
  • Moa De-Extinction, Fashionable Chimps, And Robot Surgery – No Human Required
  • “Human”: Powerful New Images Mark The Most Scientifically Accurate “Hyper-Real 3D Models Of Human Species Ever”
  • Did We Accidentally Leave Life On The Moon In 2019 – And Could We Revive It?
  • 1.8 Million Years Ago, Two Extinct Humans Had One Of The Gnarliest Deaths In History
  • “Powerful Image” Of One Of The World’s Rarest Tigers Exposes The Real Danger In Taman Negara
  • Evolution, Domestication, And A Lot Of Very Good Boys: How Wolves Became Dogs
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version