• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Why Did This Famous Medieval Palace’s Golden Ceilings Start Turning Purple?

September 13, 2022 by Deborah Bloomfield

All that is gold is not gold-colored, as Bilbo Baggins probably meant to say. Sometimes it’s purple, as in the Alhambra Palace where a gold layer on wall and ceiling ornaments has changed color over centuries. The chemistry of this conversion has finally been explained.

The Alhambra Palace in Granada is considered one of the greatest examples of Islamic architecture in the world. Construction started in 1238, but the palace was modified and expanded many times, particularly in the 14th Century.

Advertisement

Parts of Alhambra’s ceilings are gilded with sheets of gold leaf, but in places, these have developed unusual purple blotches. Purple may have been associated with emperors since Roman times, but neither the rulers nor builders of the palace intended this effect. Instead, Professor Carolina Cardell and Dr Isabel Guerra of the University of Granada have explained in Science Advances, it arose from a string of chemical reactions that led to the gold becoming nanoparticles.

The patches puzzled observers because, as the paper notes, “pure gold (Au) is the least reactive metal in natural and industrial environments. Au does not discolor under sunlight or alter under common environmental situations including humidity, air pollution, corrosive gasses, and high temperatures.”

Although Alhambra dates from what is sometimes known as Spain’s Islamic golden age, the ornaments were not solid gold – that would be both impractical and ridiculously expensive. It also would probably never have survived centuries of thieves. Instead, they are made of tin gilded with a thin golden layer.

General view of the Lions palace at Alhambra. (B) Polychrome remains exhibiting traces of purple color at confined wet sites (black arrows). (C) Damaged gilded tin with areas tinted purple in the muqarnas.

(A) General view of the Lions palace at Alhambra. (B) Polychrome remains exhibiting traces of purple color at confined wet sites (black arrows). (C) Damaged gilded tin with areas tinted purple in the muqarnas. Image Credit: Cardell and Guerra/Science Advances

A 2006 paper described the purple color, noting it only occurred in moist areas, but was unable to explain the cause.

Cardell and Guerra used a high-resolution field-emission scanning electron microscope to study the purple patches, and compare them with areas that had retained their original golden hue.

The color comes from the fact that gold particles, like those of other metals, have different properties when just nanometers wide compared to bulk materials. In fact, one can get most of the rainbow from gold particles suspended in water just by changing their size and shape. Being similar in size to the wavelengths of visible light, the particles absorb certain photons, reflecting those longer and shorter to be collected by our eyes.

(D) The gilded tin structure showing from inside to outside: corroded gray-black metallic foil, damaged metallic golden leaf (layer 2); fragments of iridescent purple-grayish covering and purple-tinted whitish coat at surface. (E) PLM image of the gilding cross section Note the irregular surface of the gray metallic foil (layer 1) and the crater-shaped voids in the gilded tin (circles).

(D) The gilded tin structure showing from inside to outside: corroded gray-black metallic foil, damaged metallic golden leaf (layer 2); fragments of iridescent purple-grayish covering and purple-tinted whitish coat at surface. (E) Polarized light microscope image of the gilding cross section. Note the irregular surface of the gray metallic foil (layer 1) and the crater-shaped voids in the gilded tin (circles). Image credit: C. Cardell and I. Guerra, University of Granada, Spain.

The authors found exposure to chlorine-rich water had broken the gilding down into nanoparticles around 70 nanometers wide – the right size to reflect the violet part of the spectrum while absorbing most other light we can see. The effect was deemed unattractive in the 19th century, and covered with a gypsum coat but some areas are starting to show through.

Besides the presence of water, the breakdown of gold to nanoparticle size depends on how porous the gold leaf is, and its adhesion to the underlying tin. The presence of tiny fissures can trigger galvanic corrosion, with the tin acting as the anode and becoming oxidized. Electrons released by the tin move to the gold, which acts as an inert electrode and therefore doesn’t react.

Thanks to pollution, however, the gold has become partially covered in grime. This creates variations in oxygen concentration on the surface of the gold, with oxygen-deficient areas dissolving into microflakes. The fact the gilders mixed some silver in with the gold enhanced the process.

Advertisement

Many reducing agents could have produced spherical gold nanoparticles from the microflakes, but the authors think the most likely are tin ions in chloride solutions. The chlorine ions that started the process are also probably a product of air pollution, rather than salt blown in from the sea.

Besides solving an old mystery, the authors hope their work will help conservators prevent corrosion of other previous historical sites.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis – Raducanu’s toughest challenge is coping with the fame game
  2. AT&T anticipates pending WarnerMedia-Discovery deal to close by mid-2022
  3. UK marketing-led group takes antitrust complaint against Google’s Privacy Sandbox to the EU
  4. Motor racing-Verstappen demands more pace after retaking F1 championship lead

Source Link: Why Did This Famous Medieval Palace’s Golden Ceilings Start Turning Purple?

Filed Under: News

Primary Sidebar

  • “Unambiguous Signal” To Curb Emissions Now: Long-Lost Aerial Photos Reveal Evolution Of Antarctic Ice Shelf Collapse
  • 8 Children Have Been Born With 3 Biological Parents Each After Mitochondrial Transfer
  • First Known Observations Of Matter-Antimatter Asymmetry In Special Particle Decay
  • In 1973, NASA Sent Two Spiders Into Space To See If They Can Spin Webs – And They Learnt A Lot
  • Meet The Many Species Of Freaky Looking “Assassin Spiders” That Only Eat Other Spiders
  • Your Dog’s TV Preferences Might Reveal Their Personality
  • Some Human Gut Bacteria Can Absorb Harmful Toxic “Forever Chemicals” So They Can Be Pooped Out
  • You Could Float Through 10 Countries Before The World’s Most International River Spat You Out
  • Enormous Coronal Hole And Beast-Like Crawling Prominences Dazzle On The Active Sun
  • Dramatic Drone Footage Of Iceland’s Latest Volcanic Eruption Shows An Epic Scene From Hell
  • A Shrimp That Lives In A Tree? Indonesia’s Cyclops Mountains Are Home To Some Seriously Strange Wildlife
  • Is NASA’s Claim That Saturn Could Float On Water Really True?
  • Pangea Proxima: This Is What Planet Earth May Look Like 250 Million Years In The Future
  • The Story Of Dogxim, The Fox-Dog Hybrid That Shouldn’t Have Existed
  • Neanderthal Butchers From Different Caves Had Their Own Specialities
  • On July 20, The US And Canada Will Witness The Little-Known Seven Sisters Eclipse
  • First-Ever Giant Ichthyosaur Soft Tissues Preserved In “Extraordinary Fossil” Dating Back 183 Million Years
  • The Worst Day In History For Humans
  • Could You Survive Being Sucked Into A Tornado?
  • AI Aliens: What If Extraterrestrial Life Is Artificially Intelligent?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version