• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Fast-Switching Luminescent Nanocrystals Could Make Computing Low-Energy

January 3, 2025 by Deborah Bloomfield

Nanocrystals have been made that can switch between glowing and darkness fast enough that they could be used in computing. Some of the ingredients used in the initial demonstration may impede widespread applications, but the findings are a significant advance down the long road to lower-energy IT as processing demand skyrockets.

So much solar power was installed last year that some experts expect world consumption of fossil fuels may have peaked. Those who disagree with this assessment point to rising energy consumption, particularly for AI and cryptocurrency mining. Instead of simply watching whether renewables can outrace rapidly rising demand, some researchers hope to find more energy-efficient ways of conducting the calculations on which these two energy hogs depend.

Advertisement

A new entrant in this race is doped nanocrystals, whose states of light and dark can represent ones and zeros for information storage. The nanocrystals belong to a class of materials known as optically bistable. That is, they can be in one of two states in terms of light emissions, reflections or transmissions depending on previous exposure, and either state is maintained for extensive periods unless something changes. Previous examples of optical bistability suffered from serious drawbacks, such as depending on temperature changes that make it hard to prevent interference between neighbors.

“Normally, luminescent materials give off light when they are excited by a laser and remain dark when they are not,” Dr Artiom Skripka of Oregon State University said in a statement. “In contrast, we were surprised to find that our nanocrystals live parallel lives. Under certain conditions, they show a peculiar behavior: They can be either bright or dark under exactly the same laser excitation wavelength and power.”

Schematic of how optically bistable crystals, as demonstrated in this study, can have information written or erased using laser illumination above or below certain levels .

Schematic of how optically bistable crystals, as demonstrated in this study, can have information written or erased using laser illumination above or below certain levels .

Image credit: Artiom Skripka, OSU College of Science

Exposure to a laser above a certain power will make one of the crystals light up, and when illumination drops below a weaker threshold they turn off, but there’s a large zone in between where the previous state is maintained. 

“If the crystals are dark to start with, we need a higher laser power to switch them on and observe emission, but once they emit, we can observe their emission at lower laser powers than we needed to switch them on initially,” Skripka continued. “It’s like riding a bike – to get it going, you have to push the pedals hard, but once it is in motion, you need less effort to keep it going. And their luminescence can be turned on and off really abruptly, as if by pushing a button.” 

Advertisement

Photonics, which would replace electrons in computing with photons of light, has been an area of great research for decades. The potential benefits are enormous, starting with the vastly greater speed at which light travels. 

However, making it work in practice has proven difficult. These crystals may provide a crucial component.

“Integrating photonic materials with intrinsic optical bistability could mean faster and more efficient data processors, enhancing machine learning algorithms and data analysis,” Skripka noted. “It could also mean more-efficient light-based devices of the type used in fields like telecommunications, medical imaging and environmental sensing.”

The crystals Skripka and colleagues demonstrated have a matrix with a formula of KPb2Cl5, which may alert some people to one potential problem. Society has finally gotten sick enough of the consequences of lead to try to replace the metal wherever possible, not by finding new applications. In an operating computer, the crystals shouldn’t be a problem, but their presence might make disposal of used machines an issue.

Advertisement

Furthermore, these crystals are not luminous until doped with neodymium 3+ ions. Neodymium is one of the so-called “rare earths” currently causing geopolitical jitters because the processing of their ores is dominated by China, which some people fear could cut off the access of countries it deems hostile.

The experiment was done on crystals cooled to almost -200 °C (-328 °F), which also offers some obvious practical problems.

“More research is necessary to address challenges such as scalability and integration with existing technologies before our discovery finds a home in practical applications,” Skripka said.

These drawbacks may be judged worth the energy savings. Ideally, now we know optical bistability is possible under much more attractive circumstances than previously achieved, further research will hopefully find preferable ways to do the same thing.

Advertisement

The study is published in Nature Photonics.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Global debt is fast approaching record $300 trillion – IIF
  2. One Identity has acquired OneLogin, a rival to Okta and Ping in sign-on and identity access management
  3. “Starquakes” On Neutron Stars Could Be Source Of Mysterious Fast Radio Bursts
  4. Iron Sulfides In Hot Springs May Have Been The Catalysts Needed To Spark Life

Source Link: Fast-Switching Luminescent Nanocrystals Could Make Computing Low-Energy

Filed Under: News

Primary Sidebar

  • Giraffes In North American Zoos Have Been Hybridizing – And That’s A Problem
  • Watch: Cosmic Fireworks As Comet Fragment Traveling Over 80,000 Kilometers Per Hour Explodes In The Air
  • Why Don’t Birds Die When They Sit On 400,000-Volt Power Lines?
  • On November 13, 2026, Voyager Will Reach One Full Light-Day Away From Earth
  • Why Don’t We Ride Zebras?
  • Interstellar Object 3I/ATLAS Changed Color Again, And Shows Signs Of Non-Gravitational Acceleration
  • Record-Breaking Brightest Black Hole Flare Shines With The Light Of 10 Trillion Suns
  • The Feared Post-COVID “Disease Rebound” Of Rampaging Infections Never Really Happened
  • Why Do More People Believe Aliens Have Visited Earth?
  • This Antarctic Glacier Just Broke An Unwanted Record – Fastest Retreat In Modern History
  • New Portuguese Man O’ War Species Discovered After Warming Ocean Currents Push It North
  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Interstellar Comet 3I/ATLAS Can Now Be Seen From Earth – Even By Amateur Telescopes!
  • For 25 Years, People Have Been Living Continuously In Space – But What Happens Next?
  • People Are Not Happy After Learning How Horses Sweat
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version