• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Living Cement: The Microbes In Your Walls Could Power The Future

September 15, 2025 by Deborah Bloomfield

Cement has long been seen as one of the world’s dullest but most essential building materials. Sturdy and gray, this material can be found everywhere in cities, such as in roads, buildings, and statues. And now, scientists have found a way to engineer “living cement” with the ability to store energy.

The rest of this article is behind a paywall. Please sign in or subscribe to access the full content.

A team of researchers from Aarhus University and Chongqing Jiaotong University has successfully embedded the bacterium Shewanella oneidensis into hardened cement, creating what they describe as a “microbial-cement hybrid.” This living material does more than hold up buildings – it can act as a rechargeable energy storage system. This breakthrough points toward a future where the materials that make up our cities might also help power them.

“We’ve combined structure with function,” said Qi Luo, lead researcher, in a statement. “The result is a new kind of material that can both bear loads and store energy – and which is capable of regaining its performance when supplied with nutrients.”

The living cement was made by adding sodium sulfate powder (tasty electrolyte for the bacteria) into cement, and then adding the bacteria diluted in sterile deionized water. The cement slurry was poured into molds and cured at room temperature for 24 hours. 

S. oneidensis is an electroactive microorganism. This means it is a champion in the world of electron transfer, and it can naturally move electrons across surfaces like a biological conductor. By mixing these microbes with cement, the bacteria build an interconnected system that manages electrical charges. This living cement achieves 178.7 watt-hours per kilogram (Wh/kg) energy density. To understand the bigger picture, an LED lightbulb typically uses 4-18 W. So, one kilogram (2.2 pounds) of this new cement can power up to 44 LED lightbulbs. That’s a lot of energy produced by microscopic bacteria.   

After 10,000 cycles of energy usage, the cement was still able to retain 85 percent of its capacity, showing its potential for long-term use. However, like all living things, the bacteria can die. The researchers used tiny channels within the cement to supply nutrients to the bacteria and were able to revive the bacteria with 80 percent of the original capacity. This is a distinct leap from conventional batteries or passive energy storage, because the process is renewable, regenerative, and doesn’t rely on toxic heavy metals. Good news for sustainability and the environment.

The living concrete remained functional under a wide range of conditions. Temperature tests showed that charge storage continued both at subzero temperatures (-15°C/5°F) and in typical room-temperature environments (20°C to 33°C/68°F to 91.4°F). This resilience could make microbial cement an attractive candidate for real-world applications, from cold climates to city centers. 

“This isn’t just a lab experiment,” said Qi Luo. “We envision this technology being integrated into real buildings, in walls, foundations, or bridges, where it can support renewable energy sources like solar panels by providing local energy storage. Imagine a regular room built with bacteria-infused cement: even at a modest energy density of 5 Wh/kg, the walls alone could store about 10 kWh – enough to keep a standard enterprise server running for a whole day.”

While the concept is exciting, it’s far from ready to roll out into construction sites. Cement’s natural alkalinity poses a tough challenge for microbial survival, and the performance of electroactive microorganisms is sensitive to environmental conditions. Over time, microbes might decline or lose functionality, raising questions about longevity and reliability.

The researchers are suggesting possible solutions such as engineering hardier microbial strains and tweaking cement’s porosity for better nutrient flow. 

The concept of “living cement” brings sustainable building materials one step closer to reality, blending biology and engineering for a future where the very walls around us could power the technologies inside. What a world to live in. 

This study is published in Cell Reports Physical Science. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. YouTravel.Me packs up $1M to match travelers with curated small group adventures
  2. Japan’s securities industry group to review IPO price-setting process
  3. BlackRock says it is dipping its toes back in to China after rout
  4. Woman In India Seeks Help After Developing Large “Horns” On Her Head

Source Link: Living Cement: The Microbes In Your Walls Could Power The Future

Filed Under: News

Primary Sidebar

  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Interstellar Comet 3I/ATLAS Can Now Be Seen From Earth – Even By Amateur Telescopes!
  • For 25 Years, People Have Been Living Continuously In Space – But What Happens Next?
  • People Are Not Happy After Learning How Horses Sweat
  • World’s First Generational Tobacco Ban Takes Effect For People Born After 2007
  • Why Was The Year 536 CE A Truly Terrible Time To Be Alive?
  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version