• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Revolutionary New Approach To Solving Errors Could “Deliver Useful Quantum Computing Sooner”

February 8, 2024 by Deborah Bloomfield

Quantum computers have the potential to outperform even the most powerful supercomputers by leveraging the laws of quantum mechanics for their computation. The qubits (quantum bits) that perform those operations are in quantum states that are susceptible to environmental effects, which can lead to errors. For this reason, error correction is a big focus in the field. A company has now presented a bold new approach to how this can be done.

A quite common approach to error correction is to surround your computing qubit with a large number of qubits that can make sure it is functioning correctly. This number can vary between 1,000 and 10,000 qubits working to correct a single one. This is seen as a “brute force” approach to the problem, but it is clear that it requires a lot of qubits for not much computation.

Advertisement

Several models have tried to solve this, bringing the number of qubits down to at least a comparable number. Academic research has been looking at ways to work on correction directly on one qubit, with some breakthroughs in how long a qubit works before succumbing to the “noise” – temperature changes, magnetic fields, and a wide variety of other factors.

A single-qubit approach to correction has also now been announced by startup Nord Quantique. The Canadian company has announced that they can do it without extra qubits, the first in the industry to do so. Their method reduces errors by 14 percent on a single qubit by itself.

Their quantum system uses a cavity of ultrapure and superconducting aluminum. Microwave photons are introduced in the cavity and they are placed in specific quantum states to do the computation. The team believes that they can build a quantum computer with 100 logical qubits and a handful of physical ones that help reduce the other types of errors. Using photons as bosonic qubits they will be able to reach faster speeds, up to 1,000 times faster than other quantum computing architectures.

Advertisement

“Our model incorporates redundancy into every logical qubit, drastically reducing the number of physical qubits required for error correction once scaled. This positions us well to develop highly efficient and scalable quantum computers, without the need for vast amounts of physical qubits devoted to error correction, and potentially reaching fault-tolerance in a shorter time,” Julien Camirand Lemyre, President and CTO at Nord Quantique, said in a statement.

The road to fully scalable error-free quantum computers is far from straightforward, so the exploration of different methods is key to finding winning architectures that could move the technology forward.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Revolutionary New Approach To Solving Errors Could "Deliver Useful Quantum Computing Sooner"

Filed Under: News

Primary Sidebar

  • US Just Killed NASA’s Mars Sample Return Mission – So What Happens Now?
  • Art Sleuths May Have Recovered Traces Of Da Vinci’s DNA From One Of His Drawings
  • Countries With The Most Narcissists Identified By 45,000-Person Study, And The Results Might Surprise You
  • World’s Oldest Poison Arrows Were Used By Hunters 60,000 Years Ago
  • The Real Reason You Shouldn’t Eat (Most) Raw Cookie Dough
  • Antarctic Scientists Have Just Moved The South Pole – Literally
  • “What We Have Is A Very Good Candidate”: Has The Ancestor Of Homo Sapiens Finally Been Found In Africa?
  • Europe’s Missing Ceratopsian Dinosaurs Have Been Found And They’re Quite Diverse
  • Why Don’t Snorers Wake Themselves Up?
  • Endangered “Northern Native Cat” Captured On Camera For The First Time In 80 Years At Australian Sanctuary
  • Watch 25 Years Of A Supernova Expanding Into Space Squeezed Into This 40-Second NASA Video
  • “Diet Stacking” Trend Could Be Seriously Bad For Your Health
  • Meet The Psychedelic Earth Tiger, A Funky Addition To “10 Species To Watch” In 2026
  • The Weird Mystery Of The “Einstein Desert” In The Hunt For Rogue Planets
  • NASA Astronaut Charles Duke Left A Touching Photograph And Message On The Moon In 1972
  • How Multilingual Are You? This New Language Calculator Lets You Find Out In A Minute
  • Europa’s Seabed Might Be Too Quiet For Life: “The Energy Just Doesn’t Seem To Be There”
  • Amoebae: The Microscopic Health Threat Lurking In Our Water Supplies. Are We Taking Them Seriously?
  • The Last Dogs In Antarctica Were Kicked Out In April 1994 By An International Treaty
  • Interstellar Comet 3I/ATLAS Snapped By NASA’s Europa Mission: “We’re Still Scratching Our Heads About Some Of The Things We’re Seeing”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version