• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Asteroid 33 Polyhymnia May Contain Elements Not Yet Seen On Earth

July 19, 2025 by Deborah Bloomfield

Some asteroids are dense. So dense in fact, that they may contain heavy elements outside of the periodic table, according to a new study on mass density.

The team of physicists from The University of Arizona say they were motivated by the possibility of Compact Ultradense Objects (CUDOs) with a mass density greater than Osmium, the densest naturally occurring, stable element, with its 76 protons.

“In particular, some observed asteroids surpass this mass density threshold. Especially noteworthy is the asteroid 33 Polyhymnia,” the team writes in their study, adding that “since the mass density of asteroid 33 Polyhymnia is far greater than the maximum mass density of familiar atomic matter, it can be classified as a CUDO with an unknown composition.”

The team looked at the properties of potential elements with atomic numbers (Z) higher than the highest atomic number in the current periodic table. Though Osmium is the densest stable element, elements with higher atomic numbers have been produced experimentally.



Oganesson, first synthesized in 2002 by bombarding californium-249 with calcium-48 atoms, has an atomic number of 118 and is the densest element in the periodic table. Elements towards the higher end of the table tend to be unstable, radioactive, and have incredibly short half-lives. 

Elements beyond the periodic table have been modeled, with physicists predicting their properties. The Arizona team did the same using the relativistic Thomas-Fermi model of the atom, attempting to estimate the mass density of elements 110 Z and higher.

Looking at elements still within the periodic table, they could not find elements with high enough mass densities to explain what has been observed of asteroid 33 Polyhymnia, even if they were stable enough to be considered a candidate.

“However, elements in the other theoretical island of nuclear stability near Z = 164, which we predict to populate mass density values between 36.0 and 68.4 g/cm3, are reasonable candidates,” the team wrote. “If some significant part of the asteroid were made of these superheavy metals, it is plausible that the higher mass density could be near the experimentally measured value.”

“Our results on mass density allow us to hypothesize that if superheavy elements are sufficiently stable, they could exist in the cores of dense asteroids like 33 Polyhymnia,” the team added in the paper.

While preliminary, it is nevertheless exciting to anyone from people with a vague interest in physics to tech bros with plans for space mining.

“All super-heavy elements – those that are highly unstable as well as those that are simply unobserved – have been lumped together as ‘unobtainium’”, Jan Rafelski, an author on the paper, added in a press release. “The idea that some of these might be stable enough to be obtained from within our Solar System is an exciting one.”

The study was published in The European Physical Journal Plus.

A previous version of this article was first published in October 2023.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Unexplained And Deadly Heat Wave Hotspots Are Showing Up Across The Planet
  4. If Birds Are Dinosaurs, Why Are None As Big As T. Rexes?

Source Link: Asteroid 33 Polyhymnia May Contain Elements Not Yet Seen On Earth

Filed Under: News

Primary Sidebar

  • An Alien-Like Fish With A See-Through Head And Green Eyes Lurks In The Ocean’s Dark Depths
  • Africa Wants To Change Misleading World Map, The “Wow!” Signal Was Likely From An Extraterrestrial Source, And Much More This Week
  • A “Good Death”: How Do Doctors Want To Die?
  • People Are Throwing Baby Puffins Off Cliffs In Iceland Again – But Why?
  • Yet Another Ancient Human Skull Turns Out To Be Denisovan
  • Gen Z Might Not Be On Course For A Midlife Crisis – Good News, Right? Wrong
  • Glowing Plants, Punk Ankylosaur, And Has The Wow! Signal Been Solved?
  • Pulsar Fleeing A Supernova Spotted Where Neither Of Them Should Be
  • 20 Years After Hurricane Katrina: Is It Time For A New Approach To Hurricane Classification?
  • Dog Named Scribble Replicates Quantum Factorization Records – So We Tried It Too
  • How Old Is The Solar System? (And How Can We Tell?)
  • Next Week, A Record-Breaking Over 7 Billion People Will See The Total Lunar Eclipse
  • The Goblin Shark Has The Fastest Jaws In The Ocean, Firing Like A Slingshot At Speeds Of 3.1-Meters-Per-Second
  • We Thought Geological Boundaries Were Random. Now, A New Study Has Identified Hidden Patterns
  • Do Fish Sleep?
  • The Biblical Flood Myth That Inspired Noah’s Ark Had A Sinister Twist
  • Massive Review Of 19 Autism Therapies Finds No Strong Evidence And Lack Of Safety Data
  • Giant City-Swallowing Cracks In Earth’s Surface Are A “New Geo-Hydrological Hazard”
  • Three Incredible Telescopes Looked At The Butterfly Nebula To Learn Where Earth Came From
  • The Pacific Ocean Is So Vast It Contains Its Own Antipodes
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version