• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Most Precise Measurement Of The Higgs Boson’s Mass Defines Universe’s Parameters

December 21, 2023 by Deborah Bloomfield

CERN’s ATLAS Collaboration has released a new measurement of the mass of the Higgs boson with a precision of 0.09 percent. Since the Higgs’ mass is one of the fundamental parameters that defines many aspects of the universe, this sort of precision can improve our understanding of many other particle interactions.

For decades the Higgs boson was the great white whale of particle physics, the last particle in the Standard Model to be found. The Large Hadron Collider was built largely to find it. In 2012 it was found with sufficient certainty to satisfy the physics community, leading to the awarding of the 2013 Nobel Prize. Nevertheless, those findings still involved considerable uncertainty regarding the Higgs’ mass, possibly the most important thing we could learn about it other than its existence.

Advertisement

Since then, there have been several efforts to narrow down the possible mass range further, with this latest result the most successful yet.

Masses for subatomic particles are measured in electron volts, which sounds confusing until you remember that by Einstein’s famous equation, energy and mass are equivalent, other than the multiplier of the speed of light squared. According to the new result, the Higgs’ mass is 125.11 ± 0.11 gigaelectron volts (GeV).

This puts the Higgs’ mass near the bottom of the 2012 announcement, which placed it between 125 and 126 GeV. Previous work had identified that for the Higgs to be the particle we thought it was, it needed to have mass between 114 and 143 GeV, so the true value turns out to be quite near the middle of that range.

Peter Higgs, after whom the particle was named, and collaborators concluded the Higgs was necessary because there had to be a particle that carried the Higgs Field. This would confer mass on many particles, particularly the W and Z particles that transmit the weak nuclear force. Without such particles, the universe simply wouldn’t work.

Advertisement

That was in 1964, and the search for it took almost 50 years, followed by another decade and counting to refine the mass further. The exact value of the mass shapes the way the Higgs interacts with other particles, framing what we anticipate and where we look for many other aspects of physics today, and in the universe’s first moments.

It might seem a simple matter to find and measure the mass of such a vital particle, but a key feature of the Higgs is that it doesn’t last very long. Its expected lifetime is around 10-22 seconds. Consequently, we never get a look at the Higgs itself, only reconstructing it from the products it decays into.

In this case, the measurement was made by first slamming protons together at great speed to make Higgs bosons, then observing their breakdown. The decay took place through two channels, either to high-energy gamma rays or to a real and virtual Z boson pair, which then decay to four leptons, each of which was measured.

The study is to be published in Physical Review Letters and a preprint is available on ArXiv.org.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Brits want their next smartphone to be environmentally conscious
  2. Index Ventures launches web-app to help founders calculate employee stock options
  3. Medieval Monks “Riddled With Parasites” Due To Dodgy Poop Practises
  4. Controversial Experiment Saw Mental Health Support Provided Using AI

Source Link: Most Precise Measurement Of The Higgs Boson’s Mass Defines Universe’s Parameters

Filed Under: News

Primary Sidebar

  • Wild One-Minute Video Clearly Demonstrates Why Mercury Is Banned On Airplanes
  • Largest Structure In The Maya Realm Is A 3,000-Year-Old Map Of The Cosmos – And Was Built By Volunteers
  • Could We Eat Dinosaur Meat? (And What Would It Taste Like?)
  • This Is The Only Known Ankylosaur Hatchling Fossil In The World
  • The World’s Biggest Frog Is A 3.3-Kilogram, Nest-Building Whopper With No Croak To Be Found
  • Interstellar Object 3I/ATLAS Has Slightly Changed Course And May Have Lost A Lot Of Mass, NASA Observations Show
  • “Behold The GARLIATH!”: Enormous “Living Fossil” Hauled From Mississippi Floodplains Stuns Scientists
  • We Finally Know How Life Exists In One Of The Most Inhospitable Places On Earth
  • World’s Largest Spider Web, Created By 111,000 Arachnids In A Cave, Is Big Enough To Catch A Whale
  • What Is A Horse Chestnut? A Crusty Remnant Of Evolution (That People Like To Feed Their Dogs)
  • First Evidence Of High “Forever Chemicals” In Urban Wild Mammals Reveals Australian Possums Contaminated With PFAS
  • Why Don’t You Have A Tail?
  • What Happens If Someone Actually Finds The Loch Ness Monster?
  • Golden Comet C/2025 K1 (ATLAS) Is A Chemical Rarity – And It Should Have Been Destroyed!
  • Bat Species Not Seen In 55 Years Rediscovered And Filmed For First Time – Just Look At Those Ears
  • At Last, We May Finally Have A Way To Tell Female Dinosaurs From Males
  • Giraffes In North American Zoos Have Been Hybridizing – And That’s A Problem
  • Watch: Cosmic Fireworks As Comet Fragment Traveling Over 80,000 Kilometers Per Hour Explodes In The Air
  • Why Don’t Birds Die When They Sit On 400,000-Volt Power Lines?
  • On November 13, 2026, Voyager Will Reach One Full Light-Day Away From Earth
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version