• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Most Precise Measurement Of The Higgs Boson’s Mass Defines Universe’s Parameters

December 21, 2023 by Deborah Bloomfield

CERN’s ATLAS Collaboration has released a new measurement of the mass of the Higgs boson with a precision of 0.09 percent. Since the Higgs’ mass is one of the fundamental parameters that defines many aspects of the universe, this sort of precision can improve our understanding of many other particle interactions.

For decades the Higgs boson was the great white whale of particle physics, the last particle in the Standard Model to be found. The Large Hadron Collider was built largely to find it. In 2012 it was found with sufficient certainty to satisfy the physics community, leading to the awarding of the 2013 Nobel Prize. Nevertheless, those findings still involved considerable uncertainty regarding the Higgs’ mass, possibly the most important thing we could learn about it other than its existence.

Advertisement

Since then, there have been several efforts to narrow down the possible mass range further, with this latest result the most successful yet.

Masses for subatomic particles are measured in electron volts, which sounds confusing until you remember that by Einstein’s famous equation, energy and mass are equivalent, other than the multiplier of the speed of light squared. According to the new result, the Higgs’ mass is 125.11 ± 0.11 gigaelectron volts (GeV).

This puts the Higgs’ mass near the bottom of the 2012 announcement, which placed it between 125 and 126 GeV. Previous work had identified that for the Higgs to be the particle we thought it was, it needed to have mass between 114 and 143 GeV, so the true value turns out to be quite near the middle of that range.

Peter Higgs, after whom the particle was named, and collaborators concluded the Higgs was necessary because there had to be a particle that carried the Higgs Field. This would confer mass on many particles, particularly the W and Z particles that transmit the weak nuclear force. Without such particles, the universe simply wouldn’t work.

Advertisement

That was in 1964, and the search for it took almost 50 years, followed by another decade and counting to refine the mass further. The exact value of the mass shapes the way the Higgs interacts with other particles, framing what we anticipate and where we look for many other aspects of physics today, and in the universe’s first moments.

It might seem a simple matter to find and measure the mass of such a vital particle, but a key feature of the Higgs is that it doesn’t last very long. Its expected lifetime is around 10-22 seconds. Consequently, we never get a look at the Higgs itself, only reconstructing it from the products it decays into.

In this case, the measurement was made by first slamming protons together at great speed to make Higgs bosons, then observing their breakdown. The decay took place through two channels, either to high-energy gamma rays or to a real and virtual Z boson pair, which then decay to four leptons, each of which was measured.

The study is to be published in Physical Review Letters and a preprint is available on ArXiv.org.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Brits want their next smartphone to be environmentally conscious
  2. Index Ventures launches web-app to help founders calculate employee stock options
  3. Medieval Monks “Riddled With Parasites” Due To Dodgy Poop Practises
  4. Controversial Experiment Saw Mental Health Support Provided Using AI

Source Link: Most Precise Measurement Of The Higgs Boson’s Mass Defines Universe’s Parameters

Filed Under: News

Primary Sidebar

  • What Is Actually Happening When You Get Blackout Drunk? An Ethically Dubious Experiment Found Out
  • Koalas Get A Shot At Survival As World-First Chlamydia Vaccine Gets Approval
  • We Could See A Black Hole Explode Within 10 Years – Unlocking The Secrets Of The Universe
  • Denisovan DNA May Make Some People Resistant To Malaria
  • Beware The Kellas Cat? This “Cryptid” Turned Out To Be Real, But It Wasn’t What People Thought
  • “They Simply Have A Taste For The Hedonists Among Us”: Festival Mosquito Study Has Some Bad News
  • What Is The Purpose Of Those Lines On Your Towels?
  • The Invisible World Around Us: How Can We Capture And Clean The Air We Breathe?
  • 85-Million-Year-Old Dinosaur Eggs Dated Using “Atomic Clock For Fossils” For The First Time
  • Why Shouldn’t You Kiss Babies? New Study Shows Even Healthy Newborns Can Become Severely Ill With RSV
  • Earth Has A New Quasi-Moon – And It Has Probably Been Around For Decades
  • Want To Kill Your Prey? Do It Feather-Legged Lace Weaver Spider Style And Vomit All Over Them
  • IFLScience The Big Questions: Are We In The Anthropocene?
  • The Wildfire Paradox Affecting 440 Million People Has As Worrying A Solution As You’d Expect
  • AI May Infringe On Your Rights And Insult Your Dignity (Unless We Do Something Soon)
  • How Do You Study Cryptic Species? We’re Finally Lifting The Lid On The World’s Least Understood Mammals
  • Once-In-A-Decade Close Encounter With Hazardous Asteroid 2025 FA22 Approaches
  • With 229 Pairs, This Beautiful Animal Has The Highest Number Of Chromosomes Of Any Animal
  • “An Unimaginable Breakthrough”: Loudest-Ever Gravitational Wave Collision Proves Stephen Hawking Correct
  • Exciting Martian Mudstone Has Features That Might Be Considered Biosignatures
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version