• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Quantum Entanglement Can Simulate Traveling Back In Time

October 13, 2023 by Deborah Bloomfield

Hindsight, as they say, is 20/20, but sometimes it would be nice to have known the outcomes before making a choice. This is as true in day-to-day life as it is in quantum mechanics. But it seems that the quantum world has something we do not have: a way to alter yesterday’s choices today, before they become tomorrow’s mistakes.

None of this is real time-travel. Physicists remain skeptical about that possibility. However, it is possible to simulate a closed time-loop with quantum mechanics, thanks to the property of entanglement. When two particles are entangled, they are in a single state even if they are separated by huge distances. A change to one is a change to the other, and this happens instantaneously.

Advertisement

So a particle can be prepared for an experiment, entangled, and sent to the experiment. Then scientists can modify its entangled companion, changing the way the particle in the experiment behaves.

“In our proposal, an experimentalist entangles two particles,” co-author Nicole Yunger Halpern, researcher at the National Institute of Standards and Technology (NIST) and the University of Maryland, said in a statement. “The first particle is then sent to be used in an experiment. Upon gaining new information, the experimentalist manipulates the second particle to effectively alter the first particle’s past state, changing the outcome of the experiment.”

“Imagine that you want to send a gift to someone: you need to send it on day one to make sure it arrives on day three,” said lead author David Arvidsson-Shukur, from the Hitachi Cambridge Laboratory. “However, you only receive that person’s wish list on day two. So, in this chronology-respecting scenario, it’s impossible for you to know in advance what they will want as a gift and to make sure you send the right one.”

“Now imagine you can change what you send on day one with the information from the wish list received on day two. Our simulation uses quantum entanglement manipulation to show how you could retroactively change your previous actions to ensure the final outcome is the one you want.”

Advertisement

You might be thinking, if they are changing the outcome of the experiment, could they truly be time-traveling? Unfortunately not. The setup is a simulation because it produces this effect probabilistically. So, there are a certain number of times when it looks like you have time-traveled, but not every time.

“The effect is remarkable, but it happens only one time out of four!” said Arvidsson-Shukur. “In other words, the simulation has a 75% chance of failure. But the good news is that you know if you have failed. If we stay with our gift analogy, one out of four times, the gift will be the desired one (for example a pair of trousers), another time it will be a pair of trousers but in the wrong size, or the wrong colour, or it will be a jacket.”

So you can refine an experiment in this way after the fact by sending a lot of entangled photons – particles of light – with some of them carrying the correct information. You would use a filter to actually see the photons that would appear to have time-traveled.

“That we need to use a filter to make our experiment work is actually pretty reassuring,” said Arvidsson-Shukur. “The world would be very strange if our time-travel simulation worked every time. Relativity and all the theories that we are building our understanding of our universe on would be out of the window.”

Advertisement

The study is published in Physical Review Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Britain’s star Raducanu takes confident step into the spotlight
  2. Japan’s Kishida: Aim distribute COVID-19 drugs by year-end if elected PM
  3. Officials Warn Deadly Monkeypox Variant In DRC Could Soon Spread Worldwide
  4. The World’s First Atomic Bomb Blast Forged “Forbidden” Quasicrystals

Source Link: Quantum Entanglement Can Simulate Traveling Back In Time

Filed Under: News

Primary Sidebar

  • Hippos Hung Around In Europe 80,000 Years Later Than We Thought
  • Officially Gone: Slender-Billed Curlew, Once-Widespread Migratory Bird, Declared Extinct By IUCN
  • Watch: Rare Footage Captures Freaky Faceless Cusk Eels Lurking On The Deep-Sea Floor
  • Watch This Funky Sea Pig Dancing Its Way Through The Deep Sea, Over 2,300 Meters Below The Surface
  • NASA Lets YouTuber Steve Mould Test His “Weird Chain Theory” In Space
  • The Oldest Stalagmite Ever Dated Was Found In Oklahoma Rocks, Dating Back 289 Million Years
  • 2024’s Great American Eclipse Made Some Birds Behave In Surprising Ways, But Not All Were Fooled
  • “Carter Catastrophe”: The Math Equation That Predicts The End Of Humanity
  • Why Is There No Nobel Prize For Mathematics?
  • These Are The Only Animals Known To Incubate Eggs In Their Stomachs And Give “Birth” Out Their Mouths
  • Constipated? This One Fruit Could Help, Says First-Ever Evidence-Led Diet Guidance
  • NGC 2775: This Galaxy Breaks The Rules Of “Galactic Evolution” And Baffles Astronomers
  • Meet The “Four-Eyed” Hirola, The World’s Most Endangered Antelope With Fewer Than 500 Left
  • The Bizarre 1997 Experiment That Made A Frog Levitate
  • There’s A Very Good Reason Why October 1582 On Your Phone Is Missing 10 Days
  • Skynet-1A: Military Spacecraft Launched 56 Years Ago Has Been Moved By Persons Unknown
  • There’s A Simple Solution To Helping Avoid Erectile Dysfunction (But You’re Not Going To Like It)
  • Interstellar Object 3I/ATLAS May Be 10 Billion Years Old, This Rare Spider Is Half-Female, Half-Male Split Down The Middle, And Much More This Week
  • Why Do Trains Not Have Seatbelts? It’s Probably Not What You Think
  • World’s Driest Hot Desert Just Burst Into A Rare And Fleeting Desert Bloom
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version