• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

The Great Dying: What Caused Earth’s Biggest Extinction Event?

August 30, 2023 by Deborah Bloomfield

Think of an extinction event, and your mind probably leaps to the asteroid that killed the dinosaurs – but Earth has been through five mass extinction events (so far) and is possibly going through our sixth.

Of the extinction events, the Cretaceous mass extinction event that put an end to the non-avian dinosaurs is not even the largest. That honor goes to the Permian mass extinction, aka The Great Dying, that wiped out around 70 percent of all land species and 96 percent of all marine species on Earth. 

Advertisement

As well as this, a strange 10-million-year gap in coal created around the time of the extinction – known as the “coal gap” – suggests that vast numbers of coal-forming trees went extinct during the event, taking millions of years to recover.

Finding a time period in the fossil record where there is a sudden drop-off in species numbers is, apparently, the easy part. Scientists have proposed a number of explanations for the extinction and the causes behind them – from a catastrophic release of methane from the ocean floor to our old friend the asteroid impact. 

From studying rocks that formed at the time of the extinction, we know that oceans and shallow waters lacked oxygen in the late Permian period. Lack of oxygen (aka anoxia) looks like it certainly played a part in the extinction event, as well as having a domino effect. 

Sulfate-reducing microorganisms, which can perform anaerobic respiration using sulfate rather than old reliable O2, likely thrived in these low-oxygen environments. The hydrogen sulfide byproduct they produce, as well as turning oceans sulfidic as a side order to their lack of oxygen, could have been released into the atmosphere. Here, it may have poisoned plants and damaged the ozone layer, exposing life to killer levels of UV rays about 250 million years before it had developed sunscreen, plus heating up the planet in the process. Heating the oceans, in turn, could have caused frozen methane in the oceans to be released into the atmosphere, compounding the problem.

Advertisement

One alternative explanation for the extinction, proposed by a team from MIT in 2014, is perhaps the most worrying. Could the biggest extinction event the world has seen have been caused by microbes?

Daniel Rothman, Professor of Geophysics at MIT, and his team noticed the rise of a certain microbe around the time of the extinction. Methanosarcina, a single-celled organism, became capable of digesting organic matter, producing methane as a byproduct, thanks to a single gene transfer from the bacteria Clostridia. 

The hypothesis is that Methanosarcina thrived at this time, spewing methane into the atmosphere and disrupting the carbon cycle, causing (or adding to) the disruption of the carbon cycle and ultimately fueling the extinction event. 

The chemical process involved in the microbes creating methane involves the metal nickel – meaning that if the team couldn’t find a corresponding higher amount of nickel during the extinction event, the hypothesis could effectively be discounted. However, the team looked at the most-studied sediments in South China and found high levels of nickel, possibly backing up the theory.

Advertisement

“A single horizontal gene transfer instigated biogeochemical change, massive volcanism acted as a catalyst, and the resulting expansion of acetoclastic Methanosarcina acted to perturb CO2 and O2 levels,” the team concluded in the study.

“The ensuing biogeochemical disruption would likely have been widespread. For example, anaerobic methane oxidation may have increased sulfide levels, possibly resulting in a toxic release of hydrogen sulfide to the atmosphere, causing extinctions on land.”

The team stressed that, though more evidence is needed for the theory, the study could show how sensitive the Earth is to evolution in microbial life.

“The implications for today are that there [are] many ways in which natural fluctuations can happen in Earth’s carbon cycle,” Rothman told The Conversation. “When studying the changes happening to the carbon cycle now, we should try to take into consideration as many of those as possible to make future predictions.”

Advertisement

The study is still far from conclusive, with other explanations – or perhaps a combination of events – still very much in the running. It is also not possible to pin down precisely when Methanosarcina evolved to begin producing methane as a byproduct. However, if this hypothesis is correct, it’s possible that up to 90 percent of the planet’s species were knocked out in part by a single gene transfer in a single microbe. 

Given the sheer volume of microbes on Earth, that isn’t the most reassuring possibility we’ve ever heard.

An earlier version of this story was first published in December 2022.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Analysis-Diverse boards to pick the next Boston and Dallas Fed bank chiefs
  4. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It

Source Link: The Great Dying: What Caused Earth's Biggest Extinction Event?

Filed Under: News

Primary Sidebar

  • Do Any Frogs Or Toads Give Birth To Live Young? Just One: Meet The Western Nimba Toad
  • Tasmanian Tigers’ Genetics May Have Doomed Them Long Before Humans Came Along
  • Scientists “Wake Up” Ancient Life That’s Been Under The Seabed For 100 Million Years
  • Measurable Brain Changes Following Cognitive Behavioral Therapy Identified For The First Time
  • “It Was Really Unexpected”: Scientists Stunned By Glowing Plants, And All It Takes Is An Injection
  • Scientists Created Gene-Edited Albino Cane Frogs To Unravel The Mysteries Of Natural Selection
  • In Vivo Vs In Vitro: What Do They Actually Mean?
  • IFLScience The Big Questions: What Will The Fossils Of The Future Look Like?
  • Finally, A Successful Starship Launch – What This Means For The Moon Landings
  • 26 Years After Launch, The ISS Will Try A New Way To Stay In Orbit Next Month
  • The World Map As You Know It Is Misleading – Now Africa Wants To Change That
  • “It’s Totally Wacky”: Oldest Known Ankylosaur Had A Kind Of Armor Never Seen In Any Vertebrate – Living Or Extinct
  • “Lost City Of The Amazon” Wasn’t Destroyed By A Volcano After All
  • Why Do Hammerhead Sharks Have A Hammerhead?
  • Neanderthals In Iberia Had Funerary Practices – They’re Just Not What We Expected
  • Monochrome Rainbows: In The Right Circumstances, Rainbows Can Look Very Strange Indeed
  • Shark Teeth Are Losing Their Bite As Ocean Acidification Takes Hold
  • Wasp “Riding A Broomstick” Among Fantastic Finalists Of Wildlife Photographer Of The Year
  • Long-Lost Sailback Houndshark Not Seen Since 1973 Rediscovered In Papua New Guinea
  • How Do You Age A Gas Giant? Jupiter’s Age Revealed By “Molten Rock Raindrops”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version