• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Electrons Trapped In A 3D Crystal For Very First Time

November 10, 2023 by Deborah Bloomfield

Researchers have been able to trap electrons in a three-dimensional crystal for the first time, a breakthrough that allowed them to start toying with the quantum effects that the electrons produce when in a state called an electronic “flat band” – and that includes superconductivity.

An electron moving through a 3D material would interact with the lattice of its atoms in different way, so the electron’s kinetic energy is usually defined in terms of a range or band. If the electron’s band is flat, it means that the range is zero – its energy is independent of the interaction with the lattice. Simplistically, that electron has zero velocity and gets stuck around a particular location.

Advertisement

When an electron is in the flat band, it is still interacting with the electrons of the atoms around its location. These interactions have too little energy to be anything but negligible when an electron is moving to the material, but when the electron is stuck in place, suddenly they matter. And peculiar quantum properties become apparent such as superconductivity and other interesting electromagnetic properties.

The rare electronic state is thanks to a special cubic arrangement of atoms (pictured) that resembles the Japanese art of “kagome.”

The kagome 3D lattice can trap the electrons.

Image Credit: courtesy of the researchers via MIT News

In the new work, researchers demonstrated that it is possible to create a 3D flat band, trapping the electron in all three dimensions. They used a 3D kagome-shaped lattice, which is used in the traditional Japanese art of basket weaving. Similar 2D lattices already demonstrated flat band electrons so the team felt this was a way to successfully create one in 3D.

“Now that we know we can make a flat band from this geometry, we have a big motivation to study other structures that might have other new physics that could be a platform for new technologies,” study author Joseph Checkelsky, associate professor of physics at MIT, said in a statement.

By making a chemical modification, the system was turned into a superconductor. This is a material through which electrons flow without resistance. To make the crystal the team synthesized pyrochlore crystals in the lab.

Advertisement

“It’s not dissimilar to how nature makes crystals,” Checkelsky explained. “We put certain elements together — in this case, calcium and nickel — melt them at very high temperatures, cool them down, and the atoms on their own will arrange into this crystalline, kagome-like configuration.”

Switching in atoms of rhodium and ruthenium instead of nickel creates the same geometrical configuration but pushes the value of the flat band to zero energy (not just zero velocity) – that’s where superconductivity happens.

“This presents a new paradigm to think about how to find new and interesting quantum materials,” added co-author professor of physics Riccardo Comin. “We showed that, with this special ingredient of this atomic arrangement that can trap electrons, we always find these flat bands. It’s not just a lucky strike. From this point on, the challenge is to optimize to achieve the promise of flat-band materials, potentially to sustain superconductivity at higher temperatures.”

Advertisement

These crystals or others like them might one day be optimized to build ultra-efficient power lines, create powerful quantum computers, and even faster electronic devices.

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. We’ve Breached Six Of The Nine “Planetary Boundaries” For Sustaining Human Civilization

Source Link: Electrons Trapped In A 3D Crystal For Very First Time

Filed Under: News

Primary Sidebar

  • What Is The Purpose Of Those Lines On Your Towels?
  • The Invisible World Around Us: How Can We Capture And Clean The Air We Breathe?
  • 85-Million-Year-Old Dinosaur Eggs Dated Using “Atomic Clock For Fossils” For The First Time
  • Why Shouldn’t You Kiss Babies? New Study Shows Even Healthy Newborns Can Become Severely Ill With RSV
  • Earth Has A New Quasi-Moon – And It Has Probably Been Around For Decades
  • Want To Kill Your Prey? Do It Feather-Legged Lace Weaver Spider Style And Vomit All Over Them
  • IFLScience The Big Questions: Are We In The Anthropocene?
  • The Wildfire Paradox Affecting 440 Million People Has As Worrying A Solution As You’d Expect
  • AI May Infringe On Your Rights And Insult Your Dignity (Unless We Do Something Soon)
  • How Do You Study Cryptic Species? We’re Finally Lifting The Lid On The World’s Least Understood Mammals
  • Once-In-A-Decade Close Encounter With Hazardous Asteroid 2025 FA22 Approaches
  • With 229 Pairs, This Beautiful Animal Has The Highest Number Of Chromosomes Of Any Animal
  • “An Unimaginable Breakthrough”: Loudest-Ever Gravitational Wave Collision Proves Stephen Hawking Correct
  • Exciting Martian Mudstone Has Features That Might Be Considered Biosignatures
  • How Long Did Dinosaurs Live? “It’s A Big Surprise To People That Work On Them”
  • NASA’s Mysterious Announcement: “Clearest Sign Of Life That We’ve Ever Found On Mars”
  • New Brain Implant Can Decode Your Internal Monologue, Raising Fears Of Mind Reading
  • “Immediate, Sustained, And Devastating” Pain: The Most Venomous Mammal Packs An Extremely Nasty Sting
  • Domestic Cats Keeping Making Hybrids. That’s A Problem, And Yes – That Includes Some Pets
  • These Strange Little Lizards Have Toxic Green Blood, And No One Knows Exactly Why
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version