• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Quantum Matter Is Being Studied At A Temperature 3 Billion Times Colder Than Deep Space

September 2, 2022 by Deborah Bloomfield

A team of Japanese and US physicists has pushed thousands of Ytterbium atoms to just within a billionth of a degree above absolute zero to understand how matter behaves at these extreme temperatures. The approach treats the atoms as fermions, the type of particles like electrons and protons, that cannot end up in the so-called fifth state of matter at those extreme temperatures: a Bose-Einstein Condensate.

When fermions are actually cooled down, they do exhibit quantum properties in a way that we can’t simulate even with the most powerful supercomputer. These extremely cold atoms are placed in a lattice and they simulate a “Hubbard model” which is used to study the magnetic and superconductive behavior of materials, in particular the collective motion of electrons through them.

Advertisement

The symmetry of these models is known as the special unitary group, or, SU, and depends on the possible spin state. In the case of Ytterbium, that number is 6. Calculating the behavior of just 12 particles in a SU(6) Hubbard model can’t be done with computers. However, as reported in Nature Physics, the team used laser cooling to reduce the temperature of 300,000 atoms to a value almost three billion times colder than the temperature of outer space.

“Unless an alien civilization is doing experiments like these right now, anytime this experiment is running at Kyoto University it is making the coldest fermions in the universe,” co-author Rice University’s Kaden Hazzard said in a statement. “Fermions are not rare particles. They include things like electrons and are one of two types of particles that all matter is made of.”

The team reports the first observations of particle coordination in an SU(6) Hubbard model. An important step forward in understanding how these systems behave and evolve.

Advertisement

“Right now this coordination is short-ranged, but as the particles are cooled even further, subtler and more exotic phases of matter can appear,” he said. “One of the interesting things about some of these exotic phases is that they are not ordered in an obvious pattern, and they are also not random. There are correlations, but if you look at two atoms and ask, ‘Are they correlated?’ you won’t see them. They are much more subtle. You can’t look at two or three or even 100 atoms. You kind of have to look at the whole system.”

The tools to measure such behaviors are still not there, but the team hopes that work to create them will soon bear fruit. By understanding the Hubbard model, one can get the basic ingredients behind the reasons why solids can be metals, insulators, magnets, or superconductors.

“One of the fascinating questions that experiments can explore is the role of symmetry,” co-author Eduardo Ibarra-García-Padilla said. “To have the capability to engineer it in a laboratory is extraordinary. If we can understand this, it may guide us to making real materials with new, desired properties.”

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. New push needed to complete stalled EU banking union – Villeroy
  2. Lifting international travel restrictions will boost U.S. economy -Commerce chief
  3. MLB roundup: Angels put crimp in Mariners’ playoff hopes
  4. This Week in Apps: TikTok shops for advertisers, Microsoft makes app store changes, Apple’s apps get reviews

Source Link: Quantum Matter Is Being Studied At A Temperature 3 Billion Times Colder Than Deep Space

Filed Under: News

Primary Sidebar

  • Bright Northern Lights Across America Expected This Week As 3 Coronal Mass Ejections Fly Towards Earth
  • Brain Implant Enables Paralyzed Man To Feel And Use Objects Using Someone Else’s Hands
  • “This Is A Really Big Deal”: Brain Training Significantly Improves Key Neurochemical Levels In World First
  • “Wholly Unexpected”: First-Ever Fossil Paranthropus Hand Raises Questions About Earliest Tool Makers’ Identity
  • For Centuries, Nobody Knew Why Swiss Cheese Has Holes. Then, The Mystery Was Solved.
  • Scientists Studied The Infamous “Chicago Rat Hole” And They Have Some Bad News
  • Massive 166-Million-Year-Old Sauropod Footprints Become The Longest Dinosaur Trackway In Europe
  • Do Spiders Dream? “After Watching Hundreds Of Spiders, There Is No Doubt In My Mind”
  • IFLScience Meets: ESA Astronaut Rosemary Coogan On Astronaut Training And The Future Of Space Exploration
  • What’s So Weird About The Methuselah Star, The Oldest We’ve Found In The Universe?
  • Why Does Red Wine Give Me A Headache? Many Scientists Blame It On The Grape Skins
  • Manta Rays Dive Way Deeper Than We Thought – Up To 1.2 Kilometers – To Explore The Seas
  • Prof Brian Cox Explains What He Finds “Remarkable” About Interstellar Object 3I/ATLAS Story
  • Pioneering “Pregnancy Test” Could Identify Hormones In Skeletons Over 1,000 Years Old
  • The First Neolithic Self-Portrait? Stony Human Face Emerges In 12,000-Year-Old Ruins At Karahan Tepe
  • Women Are Diagnosed With ADHD 5 Years Later Than Men, Even With Worse Symptoms
  • What Is Cryptozoology? We Explore The History And Mystery Of This Controversial Field
  • The Universe’s “Red Sky Paradox” Just Got Darker: Most Stars Might Never Host Observers
  • Uranus And Neptune May Not Be “Ice Giants” But The Solar System’s First “Rocky Giants”
  • COVID-19 Can Alter Sperm And Affect Brain Development In Offspring, Causing Anxious Behavior
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version