• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Sila Nanotechnologies’ battery technology will launch in Whoop wearables

September 8, 2021 by David Barret Leave a Comment

Sila Nanotechnologies next-generation battery technology made its commercial product debut Wednesday in the new Whoop fitness tracker, a milestone that caps a decade of research and development by the Silicon Valley startup all aimed at cracking the code to packing more energy into a cell at a lower cost.

Billions have been spent over the past few years on improving battery chemistry, with different startups aiming to either replace the anode or the cathode with a conversion material, like silicon or even lithium in the case of solid state companies.

Sila Nano’s battery chemistry recipe replaces graphite in a battery cell’s anode with silicon to create a more energy-dense and cheaper battery pack. Other companies, like BASF are focusing on creating a high energy dense cathode. 

While numerous companies are working on a variety of different battery chemistries, they have yet to take over the traditional cell technology found in today’s lithium-ion cells. The Sila battery used in the upcoming Whoop 4.0, the company’s latest health and performance tracker, could be the first time in the last few decades the world has seen a next-generation battery chemistry ship to market. 

“Launching a small fitness tracker doesn’t seem like a big thing, but this is really the first device in the market that proves our breakthrough, and over time, this will scale and lead to the electrification of everything,” Gene Berdichevsky, founder and CEO of Sila Nano, told TechCrunch.

Electric vehicles, and Sila Nano’s role in powering them, is at the top of Berdichevsky’s “electrification of everything” list. And the company has already made headway.

Sila Nano has joint battery ventures with BMW and Daimler to produce batteries containing the company’s silicon-anode technology, with the goal of going to market in the automotive industry by 2025. 

“You can translate this success with Whoop to cars in many ways,” said Berdichevksy. “Today, if you want a really long range vehicle, it better be a pretty big car. The smaller the EV, the shorter the range because there’s nowhere to put the battery. But as our technology advances into the automotive market, you’ll be able to have a city car that has 400 miles of range on it. This is enabling more segments of the auto industry to electrify.” 

Whoop, which earlier this month announced a $200 million raise at a $3.6 billion valuation, is introducing the Whoop 4.0 as a wearable that’s 33% smaller, in large part as a result of Sila’s battery, which has about 17% higher energy density, according to Berdichevsky. Not only does a denser, better battery lead to a smaller wearable, but Whoop was able to add additional features – like a sleep coach with haptic alerts, a pulse oximeter, a skin temperature sensor and a health monitor – without compromising its five-day battery life. 

“One of the key outcomes of enabling a chemistry like ours is it allows you to build things that couldn’t otherwise be built,” said Berdichevsky. 

In Whoop’s case, that’s referring to its new Any-Wear tech that allows the wearable to be integrated into a new line of garments like bands that can collect sensor data from areas including the torso, waist and calf.

It’s not just Sila’s chemistry that’s allowing for a successful product to go to market. It’s the scalability of the product that’s really important. Scalability has been built into Sila’s roadmap from the beginning. 

“One of the things we did very early on is we told our scientists and engineers they could only use global commodity inputs so that we know we can make enough for millions of cars,” said Berdichevsky. “Next we said you had to use only what we call ‘bulk manufacturing’ techniques, and that means you use volumetric reactors rather than planar reactors.”

An easy way to think about the difference in reactor types is through the analogy of making enough food to feed a crowd: A big pot of chili (the volumetric reactor) will go a lot farther than individual pizza pies (planar reactors).

Berdichevsky also told his team that anything they created had to be able to seamlessly drop into any battery factory process, whether that factory is supplying batteries for smartphones, cars or drones. 

Sila Nano has already proven scalability twice, Berdichevsky said. The first time it scaled 100x from lab to pilot, starting with volumetric reactors that were about the size of a liter. Wednesday’s partnership with Whoop marks the second time the company has scaled up 100x, and this time to 5,000 liter reactors. To put that in relative terms, a couple of humans could probably climb into one of those reactors. The next stage of scaling will involve reactors large enough that you could drive a car through, says Berdichevsky, which is fitting given Sila Nano’s goal of scaling up to automotive quantities over the next three years. 

“The reason we’re not in cars today is we have to go scale up 100x to have enough to really deploy in cars, but the material is the same,” said Berdichevsky. “The particles, the powder we make, it’s the same in every one of the scales we’ve made so far.”

Source Link Sila Nanotechnologies’ battery technology will launch in Whoop wearables

David Barret
David Barret

Related posts:

  1. What 377 Y Combinator pitches will teach you about startups
  2. Tennis-Fearless teenagers and hungry qualifiers light up U.S. Open
  3. South Africa’s former President Zuma placed on medical parole
  4. Tennis-Qualifier Van de Zandschulp tames Argentine battler to reach quarters

Filed Under: News

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • The Mathematical Paradox That Lets You Create Something From Nothing
  • Ancient Asteroid Ripped Apart In Collision Had Flowing Water
  • Flying Foxes Include The World’s Biggest Bat And The Largest Mammal Capable Of True Flight
  • NASA Responds To Claims That Interstellar Object 3I/ATLAS Is An Advanced Alien Spacecraft
  • Millions Of Tons Of Gold Are In Earth’s Oceans, Potentially Worth Over $2 Quadrillion
  • The Race Back To The Moon: US Vs China, Will What Happens Next Change The Future?
  • NOAA Issues G3 Geomagnetic Storm Warning As 500,000 Kilometer Hole Sends Solar Wind At Earth
  • Lasting 776 Days, This Is The Longest Case Of COVID-19 Ever Recorded
  • Living Cement: The Microbes In Your Walls Could Power The Future
  • What Can Your Earwax Reveal About Your Health?
  • Ever Seen A Giraffe Use An Inhaler? Now You Can, And It’s Incredibly Wholesome
  • Martian Mudstone Has Features That Might Be Biosignatures, New Brain Implant Can Decode Your Internal Monologue, And Much More This Week
  • Crocodiles Weren’t All Blood-Thirsty Killers, Some Evolved To Be Plant-Eating Vegetarians
  • Stratospheric Warming Event May Be Unfolding In The Southern Polar Vortex, Shaking Up Global Weather Systems
  • 15 Years Ago, Bees In Brooklyn Appeared Red After Snacking Where They Shouldn’t
  • Carnian Pluvial Event: It Rained For 2 Million Years — And It Changed Planet Earth Forever
  • There’s Volcanic Unrest At The Campi Flegrei Caldera – Here’s What We Know
  • The “Rumpelstiltskin Effect”: When Just Getting A Diagnosis Is Enough To Start The Healing
  • In 1962, A Boy Found A Radioactive Capsule And Brought It Inside His House — With Tragic Results
  • This Cute Creature Has One Of The Largest Genomes Of Any Mammal, With 114 Chromosomes
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version