• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

This Biohybrid Robot Hand Can Win Rock, Paper, Scissors – Provided You Play Paper

February 13, 2025 by Deborah Bloomfield

A robot hand powered by lab-grown muscles is challenging you to a game of Rock, Paper, Scissors – do you accept? Here’s hoping you choose rock, because a new remarkable biohybrid has just perfected the scissors sign thanks to multiple muscle tissue actuators (MuMuTAs) that are bringing us closer to larger biohybrid limbs (and in case the above scenario actually happens, you might like to know there’s a way to win Rock, Paper, Scissors).

ADVERTISEMENT GO AD FREE

The hand is huge by biohybrid robotics’ standards, measuring 18 centimeters (7 inches) in length while most other devices have been closer to 1 centimeter (0.4 inches). It’s made up of an articulated plastic base created with a 3D printer. This is able to move thanks to tendon-like structures made of human muscle tissue, which its creators liken to sushi rolls.

“Our key achievement was developing the MuMuTAs,” explained study co-author Professor Shoji Takeuchi from the University of Tokyo in a statement. “These are thin strands of muscle tissue grown in a culture medium and then rolled up into a bundle like a sushi roll to make each tendon. Creating the MuMuTAs enabled us to overcome our biggest challenge, which was to ensure enough contractile force and length in the muscles to drive the hand’s large structure.”

The complex combination of movements required for this simple scissor gesture is a big step up from the capabilities of previous biohybrid robots.

Eat scissors, puny human.

Video credit: X. Ren, Y. Morimoto and S. Takeuchi, 2025/ Science Robotics

Making the scissor sign like this marks a big step up in the capabilities of biohybrid robots compared to previous devices. It brings us closer to creating prostheses that can mimic human movement realistically and appear more lifelike. The biohybrid robot arm has yet to be deployed outside of a lab environment, but its unique MuMuTA design marks a new direction in biohybrid prosthetics.

Beyond replacing lost limbs with something more functional, it’s possible that the future of biohybrid technology could lead to improved drug testing on muscle tissue, and perhaps even bring us closer to creating entire biohybrid robotic lifeforms.

“A major goal of biohybrid robotics is to mimic biological systems, which necessitates scaling up their size,” said Takeuchi. “Our development of the MuMuTAs is an important milestone for achieving this.”

“The field of biohybrid robotics is still in its infancy, with many foundational challenges to overcome. Once these basic hurdles are addressed, this technology could be used in advanced prosthetics, and could also serve as a tool for understanding how muscle tissues function in biological systems, to test surgical procedures or drugs targeting muscle tissues.” 

ADVERTISEMENT GO AD FREE

The study is published in (and on the cover of) the journal Science Robotics.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Dollar lost for direction awaiting Fed to set its path: Reuters poll
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Unexplained And Deadly Heat Wave Hotspots Are Showing Up Across The Planet

Source Link: This Biohybrid Robot Hand Can Win Rock, Paper, Scissors – Provided You Play Paper

Filed Under: News

Primary Sidebar

  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • What Alternatives Are There To The Big Bang Model?
  • Magnetic Flip Seen Around First Photographed Black Hole Pushes “Models To The Limit”
  • Something Out Of Nothing: New Approach Mimics Matter Creation Using Superfluid Helium
  • Surströmming: Why Sweden’s Stinky Fermented Fish Smells So Bad (But People Still Eat It)
  • First-Ever Recording Of Black Hole Recoil Captured During Merger – And You Can Listen To It
  • The Moon Is Moving Away From Earth At A Rate Of About 3.8 Centimeters Per Year. Will It Ever Drift Apart?
  • As Solar Storm Hits Earth NASA Finds “The Sun Is Slowly Waking Up”
  • Plate Tectonics And CO2 On Planets Suggest Alien Civilizations “Are Probably Pretty Rare”
  • How To Watch The “Awkward” Partial Solar Eclipse This Weekend
  • World’s Oldest Pots: 20,000-Year-Old Vessels May Have Been Used For Cooking Clams Or Brewing Beer
  • “The Body Is Slowly And Continuously Heated”: 14,000-Year-Old Smoked Mummies Are World’s Oldest
  • Pizza Slices, Polaroid Pictures, And Over 300 Hats: What’s Left Behind In Yellowstone’s Hydrothermal Areas?
  • The Mathematical Paradox That Lets You Create Something From Nothing
  • Ancient Asteroid Ripped Apart In Collision Had Flowing Water
  • Flying Foxes Include The World’s Biggest Bat And The Largest Mammal Capable Of True Flight
  • NASA Responds To Claims That Interstellar Object 3I/ATLAS Is An Advanced Alien Spacecraft
  • Millions Of Tons Of Gold Are In Earth’s Oceans, Potentially Worth Over $2 Quadrillion
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version